1S-2S energy shift in muonic hydrogen

R.N. Faustov¹, <u>A.A. Krutov</u>², A.P. Martynenko² F.A. Martynenko² and O.S. Sukhorukova²

¹Institute of Cybernetics and Informatics in Education FRC CSC RAS Moscow, Russia

> ²Samara National Research University Samara, Russia

XXIV International Baldin Seminar on High Energy Physics Problems, Dubna, 2018

Outline

Introduction

- Proton Radius Puzzle
- Future experiments
- 2 Calculation of the 1S-2S enegry shift in μp
 - Fine structure of energy levels
 - Vacuum polarization effects
 - Vacuum polarization in the second order perturbation theory
 - Relativistic corrections with VP effects
 - Nuclear structure corrections

伺 ト イヨ ト イヨト

Proton Radius Puzzle Future experiments

CREMA (Charge Radius Experiment with Muonic Atoms)

Task: to measure Lamb Shift, fine and hyperfine structure in light muonic atoms (muonic hydrogen, muonic deuterium, ions of muonic helium, muonic atoms with $Z \ge 3$); to determine charge radii of the proton, deuteron, helion, alpha-particle and other light nuclei with the accuracy 0.0005 fm.

Proton Radius Puzzle Future experiments

Proton Radius Puzzle

The proton rms charge radius measured with

muons: 0.8409 \pm 0.0004 *fm* (CREMA, Lamb Shift in μ *p*) R. Pohl et.al., Ann. Rev. Nucl. Part. Sci. **63**(175) 2013

electrons: 0.8775 ± 0.0050 fm (electron scattering) P.J. Mohr et.al., J. Phys. Chem. Ref. Data **45**(4) 2016

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proton Radius Puzzle Future experiments

Measurement of 2S-4P transition frequency in H

The proton rms charge radius from measurement of Rydberg constant in ordinary hydrogen

 $0.8335\pm0.0095~\text{fm}$

A. Beyer et.al., Science **358**(6359) 2017

< 回 > < 回 > < 回 > -

Proton Radius Puzzle Future experiments

Measurement of 1S-3S transition frequency in H

The proton rms charge radius from measurement 1S-3S transition in hydrogen

0.877 ± 0.013 fm

H. Fleurbaey et.al., PRL 120(183001) 2018

< 回 > < 回 > < 回 >

Proton Radius Puzzle Future experiments

Proton radius, main results

Group	Proton radius
CREMA	$0.8409 \pm 0.0004 \; \textit{fm}$
CODATA	$0.8775 \pm 0.0050 \; \textit{fm}$
A. Beyer	0.8335 ± 0.0095 fm
H. Fleurbaey	0.877 ± 0.013 fm

The discrepancy is still unknown.

< 回 > < 回 > < 回 >

Proton Radius Puzzle Future experiments

Future experiments with light muonic atoms

- Hyperfine splitting in μp and $\mu^3 He$
- Lamb shift (2P 2S) in μLi and μBe
- 1*S* 2*S* transition in H-like *He*⁺ ions
- 1S 2S transition in μp
- R. Pohl, J. Phys. Soc. of Japan **85**(091003) 2016 R. Pohl et.al., arXiv:1808.07240v1 2018

< ∃ →

Proton Radius Puzzle Future experiments

Big fine structure in μp

1*S* – 2*S*

In electronic hydrogen

 $\Delta \nu_{1S-2S} =$ 2466 061 413 187 018(11) *Hz*

A. Beyer et.al., PRL 110(230801) 2013

Isotopic shift hydrogen-deuterium

 $\Delta \nu = 670\ 994\ 334.64(15)\ kHz$

A. Huber et.al., PRL 80,468 (1998)

< ロ > < 同 > < 回 > < 回 > < 回 >

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theor Relativistic corrections with VP effects Nuclear structure corrections

・ロト ・ 四ト ・ ヨト ・ ヨト

Fine structure of energy levels

$$E_n = m_1 + m_2 - \frac{\mu^2 (Z\alpha)^2}{2n^2} - \frac{\mu (Z\alpha)^4}{2n^3} \left[1 - \frac{3}{4n} + \frac{\mu^2}{4m_1m_2n} \right]$$

M.I. Eides et.al., Phys.Rep. 342,62(2001)

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

 $\Delta E = \begin{cases} 1S : 1 \ 043 \ 927 \ 924 \ 269.9985 \ meV \\ 2S : 1 \ 043 \ 929 \ 820 \ 665.7786 \ meV \end{cases}$

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theo Relativistic corrections with VP effects Nuclear structure corrections

One- and two-loop vacuum polarization in 1γ interaction

Calculation of the 1S-2S enegry shift in μp Results Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theor Relativistic corrections with VP effects Nuclear structure corrections

・ロト ・ 四ト ・ ヨト ・ ヨト

э

One-loop vacuum polarization

$$V_{VP}^{C}(r) = \frac{\alpha}{3\pi} \int_{1}^{\infty} d\xi \rho(\xi) \left(-\frac{Z\alpha}{r} e^{-2m_{\theta}\xi r} \right), \rho(\xi) = \frac{\sqrt{\xi^{2} - 1}(2\xi^{2} + 1)}{\xi^{4}},$$

$$\Delta E_{VP}(1S) = -\frac{4\mu\alpha(Z\alpha)^{2}}{3\pi} \int \rho(\xi) d\xi x e^{-x\left(2 + \frac{2m_{\theta}\xi}{W}\right)} dx =$$

$$= -1898.8300 \text{ meV}$$

$$\Delta E_{VP}(2S) = -\frac{\mu(Z\alpha)^{2}\alpha}{6\pi} \int_{1}^{\infty} \rho(\xi) d\xi \int_{0}^{\infty} x dx \left(1 - \frac{x}{2}\right)^{2} e^{-x\left(1 + \frac{2m_{\theta}\xi}{W}\right)} =$$

$$= -219.5840 \text{ meV}$$

Calculation of the 1S-2S enegry shift in μp Results Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theor Relativistic corrections with VP effects Nuclear structure corrections

э

Two-loop vacuum polarization

$$V_{VP-VP}^{C}(r) = \frac{\alpha^{2}}{9\pi^{2}} \int_{1}^{\infty} \rho(\xi) d\xi \int_{1}^{\infty} \rho(\eta) d\eta \times .$$

$$\times \left(-\frac{Z\alpha}{r} \right) \frac{1}{(\xi^{2} - \eta^{2})} \left(\xi^{2} e^{-2m_{\theta}\xi r} - \eta^{2} e^{-2m_{\theta}\eta r} \right)$$

$$\Delta E_{VP-VP} = \begin{cases} 1S : -1.7915 \ meV \\ 2S : -0.2426 \ meV \end{cases}$$

$$\Delta V_{2-loop \ VP}^{C} = -\frac{2}{3} \frac{Z\alpha}{r} \left(\frac{\alpha}{\pi} \right)^{2} \int_{0}^{1} \frac{f(v) dv}{(1 - v^{2})} e^{-\frac{2m_{\theta}r}{\sqrt{1 - v^{2}}}}.$$

$$\Delta E_{2-loop \ VP} = \begin{cases} 1S : -12.6145 \ meV \\ 2S : -1.4112 \ meV \end{cases}$$

Calculation of the 1S-2S enegry shift in μp Results Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theo Relativistic corrections with VP effects Nuclear structure corrections

イロト イポト イヨト イヨト

Three-loop vacuum polarization

There are some other 3-loop contributions

T. Kinoshita and M. Nio, PRL 62, 3240 (1999); PRD 60,053008 (1999)

S.G. Karshenboim et.al., JETP Lett. 92,9 (2010); PRA 81, 060501 (2010)

 Fine structure of energy levels

 Introduction
 Vacuum polarization effects

 Calculation of the 1S-2S energy shift in μp
 Vacuum polarization in the second order perturbation theory

 Results
 Results

 Nuclear structure corrections
 Nuclear structure corrections

Green's functions

$$\begin{split} \tilde{G}(1S) &= -\frac{Z\alpha\mu^2}{\pi}e^{x_1+x_2}g_{1S} \\ g_{1S} &= \frac{1}{2x_>} -\ln(2x_>) -\ln(2x_<) + Ei(2x_<) + \frac{7}{2} - 2C - (x_1+x_2) + \frac{1-e^{2x_<}}{2x_<} \\ \tilde{G}(2S) &= -\frac{Z\alpha\mu^2}{4x_1x_2}e^{-\frac{x_1+x_2}{2}}\frac{1}{4\pi}g_{2S}(x_1,x_2), \\ g_{2S}(x_1,x_2) &= 8x_< - 4x_<^2 + 8x_> + 12x_< x_> - 26x_<^2 x_> + \\ &+ 2x_<^3x_> - 4x_>^2 - 26x_< x_>^2 + 23x_<^2 x_>^2 - \\ -x_<^3x_>^2 + 2x_< x_>^3 - x_<^2 x_>^3 + 4e^x(1-x_<)(x_>-2)x_> + 4(x_<-2)x_<(x_>-2)x_> \times \\ &\times [-2C + Ei(x_<) - \ln(x_<) - \ln(x_>)], \end{split}$$

ヘロト 人間 とくほ とくほ とう

3

Calculation of the 1S-2S enegry shift in μp Results Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects Nuclear structure corrections

э

Two-loop VP effects in the SOPT

$$<\psi|\Delta V^{C}_{V\!P} ilde{G}\Delta V^{C}_{V\!P}|\psi>$$

This contribution is of order

$$\Delta E_{SOPT}^{VP,VP} = \begin{cases} 1S : -2.0343 \text{ meV} \\ 2S : -0.1532 \text{ meV} \end{cases}$$

Calculation of the 1S-2S enegry shift in μp

Results

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Three-loop VP effects in the SOPT

These contributions are of order

$$\alpha^3 (Z\alpha)^2$$

$$\Delta E_{SOPT}^{3VP} = \begin{cases} 1S: -0.0180 \text{ meV} \\ 2S: -0.0022 \text{ meV} \end{cases}$$

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects

< ロ > < 同 > < 回 > < 回 > < □ > <

э

One-loop VP corrections to the Breit Hamiltonian

$$\begin{split} \Delta V_{VP}^{\mathcal{B}}(r) &= \frac{\alpha}{3\pi} \int_{1}^{\infty} \rho(\xi) d\xi \sum_{i=1}^{4} \Delta V_{i,VP}^{\mathcal{B}}(r), \\ \Delta V_{1,VP}^{\mathcal{B}} &= \frac{Z\alpha}{8} \left(\frac{1}{m_{1}^{2}} + \frac{\delta_{I}}{m_{2}^{2}} \right) \left[4\pi\delta(\mathbf{r}) - \frac{4m_{e}^{2}\xi^{2}}{r} e^{-2m_{e}\xi r} \right], \\ \Delta V_{2,VP}^{\mathcal{B}} &= -\frac{Z\alpha}{m_{1}m_{2}r} e^{2m_{e}\xi r} e^{-2m_{e}\xi r} (1 - m_{e}\xi r), \\ \Delta V_{3,VP}^{\mathcal{B}} &= -\frac{Z\alpha}{2m_{1}m_{2}} p_{i} \frac{e^{-2m_{e}\xi r}}{r} \left[\delta_{ij} + \frac{r_{i}r_{j}}{r^{2}} (1 + 2m_{e}\xi r) \right] p_{j}, \\ \Delta E_{VP}^{\mathcal{B}} &= \begin{cases} 1S : \ 0.1671 \ meV \\ 2S : \ 0.0249 \ meV, \end{cases}$$

Calculation of the 1S-2S enegry shift in μp

Results

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects

프 🖌 🛪 프 🕨

< 一 →

Nuclear structure corrections

Relativistic and VP corrections in SOPT

$$2 < \psi | \Delta V^B ilde{G} \Delta V^C_{VP} | \psi > .$$

 $\Delta E^B_{VP,SOPT} = egin{cases} 1S: & -0.6746 \ meV \ 2S: & -0.0456 \ meV, \end{cases}$

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects Nuclear structure corrections

Nuclear structure corrections in 1γ and 2γ interactions

 $r_N = 0.8409 \pm (0.0004) \ fm$

$$\Delta E_{str} = -\frac{\mu^3 (Z\alpha)^4}{12} < r_N^2 >= \begin{cases} 1S : 29.3994 \ meV \\ 2S : 3.6749 \ meV \end{cases}$$
$$\Delta E_{str}^{2\gamma} (nS) = -\frac{\mu^3 (Z\alpha)^5}{\pi n^3} \delta_{l0} \int_0^\infty \frac{dk}{k} V(k), \Delta E_{str}^{2\gamma} = \begin{cases} -0.1590 \ meV \\ -0.0199 \ meV \end{cases}$$

 Fine structure of energy levels

 Fine structure of energy levels

 Vacuum polarization effects

 Vacuum polarization in the second order perturbation theory

 Results

 Results

 Nuclear structure corrections

Nuclear structure corrections in 1γ and 2γ interactions

$$V(k) = \frac{2(F^2 - 1)}{m_1 m_2} + \frac{8m_1[-F(0) + 4m_2^2 F'(0)]}{m_2(m_1 + m_2)k} + \frac{k^2}{2m_1^3 m_2^3} \times \\ \times [2(F^2 - 1)(m_1^2 + m_2^2) - F^2 m_1^2] + \frac{\sqrt{k^2 + 4m_1^2}}{2m_1^3 m_2(m_1^2 - m_2^2)k} \times \\ \times \left\{ k^2 \left[2(F^2 - 1)m_2^2 - F^2 m_1^2 \right] + 8m_1^4 F^2 + \frac{16m_1^4 m_2^2(F^2 - 1)}{k^2} \right\} - \\ \frac{\sqrt{k^2 + 4m_2^2}m_1}{2m_2^3(m_1^2 - m_2^2)k} \left\{ k^2 \left[2(F^2 - 1) - F^2 \right] + 8m_2^2 F^2 + \frac{16m_2^4(F^2 - 1)}{k^2} \right\}.$$

프 () 이 프 ()

< 一 →

 Fine structure of energy levels

 Introduction
 Vacuum polarization effects

 Calculation of the 1S-2S enegry shift in μp
 Vacuum polarization in the second order perturbation theory

 Results
 Relativistic corrections with VP effects

 Nuclear structure corrections
 Nuclear structure corrections

Nuclear structure and one-loop VP correction in the first and second orders PT

$$\Delta V_{str}^{VP}(r) = \frac{2}{3}\pi Z\alpha < r_N^2 > \frac{\alpha}{3\pi} \int_1^\infty \rho(\xi) d\xi \left[\delta(\mathbf{r}) - \frac{m_e^2 \xi^2}{\pi r} e^{-2m_e \xi r} \right]$$
$$\Delta E_{str}^{VP} = \begin{cases} 1S : \ 0.1925 \ meV \\ 2S : \ 0.0120 \ meV \end{cases}$$
$$\Delta E_{str,SOPT}^{VP} = \begin{cases} 1S : \ 0.1316 \ meV \\ 2S : \ 0.0167 \ meV \end{cases}$$

Fine structure of energy levels Vacuum polarization effects Vacuum polarization in the second order perturbation theory Relativistic corrections with VP effects Nuclear structure corrections

Nuclear structure and two-loop VP correction

 Fine structure of energy levels

 Fine structure of energy levels

 Vacuum polarization effects

 Vacuum polarization in the second order perturbation theory

 Results

 Nuclear structure corrections

Nuclear structure and VP in 2γ interaction

$$\Delta E_{str,VP}^{2\gamma}(nS) = -\frac{2\mu^3 \alpha (Z\alpha)^5}{\pi^2 n^3} \int_0^\infty kV(k) dk \int_0^1 \frac{v^2(1-\frac{v^2}{3}) dv}{k^2(1-v^2)+4m_e^2},$$
$$\Delta E_{str,VP}^{2\gamma} = \begin{cases} 1S: \ 0.-0030 \ meV\\ 2S: \ -0.0004 \ meV \end{cases}.$$

< (□)

Energy of the levels

$$\Delta E = \begin{cases} 1S : 1 \ 043 \ 927 \ 924 \ 269.9985 \ meV \\ 2S : 1 \ 043 \ 929 \ 820 \ 665.7786 \ meV \end{cases}$$

A.A. Krutov 1S-2S energy shift in muonic hydrogen

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Results

Contribution	<mark>1S</mark> , meV	<mark>2S</mark> , meV
1-loop VP in 1 γ	-1898.8300	-219.5840
of order $\alpha(Z\alpha)^2$		
2-loop VP in 1 γ	-14.4060	-1.6538
of order $\alpha^2 (Z\alpha)^2$		
3-loop VP in 1 γ	-0.0158	-0.0052
of order $\alpha^3 (Z\alpha)^2$		
Relativistic an VP	0.1671	0.0249
in the first order PT		
$\alpha^3 (Z \alpha)^2$		

A.A. Krutov 1S-2S energy shift in muonic hydrogen

▲口> ▲理> ▲ヨ> ▲ヨ ● ④ ● ●

Results

Contribution	1 <mark>S</mark> , meV	<mark>2S</mark> , meV
Relativistic an VP	-0.6746	-0.0456
in the second order PT		
$\alpha^3 (Z \alpha)^2$		
2-loop VP	-2.0343	-0.1532
in the second order PT		
$\alpha^2 (Z\alpha)^2$		
3-loop VP	-0.0180	-0.0022
in the second order PT		
$lpha^3 (Zlpha)^2$		

▲口> ▲理> ▲ヨ> ▲ヨ ● ④ ● ●

Results

Contribution	1 <mark>S</mark> , meV	<mark>2S</mark> , meV
Nuclear structure	29.3994	3.6749
of order $(Z\alpha)^4$		
Nuclear structure (2 γ)	-0.1590	-0.0199
of order $(Z\alpha)^5$		
Nuclear structure and VP (2 γ)	-0.0030	-0.0004
of order $\alpha(Z\alpha)^5$		
Nuclear structure and 1-loop VP	0.3241	0.0287
of order $\alpha(Z\alpha)^4$		
Nuclear structure and 2-loop VP	0.0124	0.0009
of order $\alpha^2 (Z\alpha)^4$		

▲口> ▲理> ▲ヨ> ▲ヨ ● ④ ● ●

Total result

$\Delta E(2S - 1S) = 1\ 898\ 064.2650\ meV$

A.A. Krutov 1S-2S energy shift in muonic hydrogen

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The effects of vacuum polarization led to the modification of the Breit two-particle interaction operator and give the corrections in the energy spectra up to the fifth order in α
- The nuclear structure effects are expressed in terms of proton radius in the leading order (Zα)⁴ and (Zα)⁵ for the one-loop amplitudes by means of the nucleus electromagnetic form factors.
- Relativistic and vacuum polarization effects are significant for energy spectra of light muonic atoms, their order is α³(Zα)²

・ 戸 ト ・ ヨ ト ・ ヨ ト

Thanks you for attention!

A.A. Krutov 1S-2S energy shift in muonic hydrogen

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

æ

Results

Contribution	1 <mark>S</mark> , meV	<mark>2S</mark> , meV
Radiative corrections	0.0353	0.0043
of order $lpha({m Z}lpha)^5$		
Rad and VP	0.0167	0.0023
of order $\alpha^2 (Z\alpha)^4$		
Recoil corrections	0.3109	0.0419
of order $(Z\alpha)^5$		
Nuclear	-0.1291	-0.0161
polarization		
of order $(Z\alpha)^5$		
Hadronic VP	-0.0864	-0.0108

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶ →

Contribution	1 <mark>S</mark> , meV	<mark>2S</mark> , meV
Muonic self-energy	5.1267	0.6442
and muonic VP		
of order $\alpha(Z\alpha)^4$		

A.A. Krutov 1S-2S energy shift in muonic hydrogen

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □