Analytical calculation of phase-space integrals in massless QCD

BLTP JINR
in collaboration with A.Gituliar and V.Magerya

Overview

- Motivation
- Phase-space integrals
- Dimensional recurrence relations and $1 \rightarrow 5$ PS integrals
- Fixing periodic function
- Integrals with virtual corrections

Motivation

Fully-inclusive and semi-inclusive processes in QCD

- Deep-inelastic scattering

- Sum rules

MINCER

- Fixed moments

MINCER

- Full x or n dependence
$\operatorname{Im} T^{\mu \nu}$
$>e^{+} e^{-}$annihilation

- Total crossection

MINCER

- Fixed moments

PS integration/number

- Full x or n dependence PS int/function

Phase-space integrals

Phase-space integration in a nutshell

$$
\int\left(\prod_{i=1}^{n} d^{D} p_{i} \delta\left(p_{i}^{2}\right) \theta\left(E_{i}\right)\right) \delta^{(D)}\left(q-p_{1}-\ldots-p_{n}\right) f\left(p_{i} \cdot p_{j}\right)
$$

Important features:

- Very complicted integration domain
- Propagators may contain singularities:

$$
\text { collinear }\left(\beta_{i} \cdot \beta_{j}\right) \rightarrow 0 \text {, partons emitted at a small angle }
$$

$$
\text { infrared } E_{i} \rightarrow 0 \text {, very low energy massless partons }
$$

- The enormous number of momenta components to be integrated directly
- Function $f(\ldots)$ and hence propagators are functions of invariants $s_{i j k \ldots}=\left(p_{i}+p_{j}+p_{k}+\ldots\right)^{2}$ formed by scalar products only

Invariant phase-space integration

Integrals of our interest have form:

$$
I_{n}=\int\left(\prod_{i} d^{D} p_{i}\right) f\left(p_{i} \cdot p_{j}\right)
$$

From momentum integration to eplicit integration over scalar products

$$
I_{n}=\prod_{k=1}^{n-1} \Omega_{D-k} \int \prod_{i<j} d s_{i j}\left(\Delta_{n}\right)^{\frac{D-n-1}{2}} \Theta\left(\Delta_{n}\right) \delta\left(1-s_{12 \ldots n}\right) f\left(s_{i j}\right)
$$

We define Gramm determinant for n massless partons momenta:

$$
\Delta_{n}=\frac{(-1)^{n+1}}{2^{n}}\left|\begin{array}{cccc}
0 & s_{12} & \cdots & s_{1 n} \\
s_{12} & 0 & \cdots & s_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
s_{1 n} & s_{2 n} & \cdots & 0
\end{array}\right|, \quad \Omega_{n}=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}
$$

Complications due to the Gramm determinant

- Two- and three-particle PS: no constraints from the theta-function $\Theta\left(\Delta_{n}\right)$

$$
\Delta_{2}=\frac{1}{4} s_{12}^{2}, \quad \Delta_{3}=\frac{1}{4} s_{12} s_{13} s_{23}
$$

- Four-particle PS depends on Källén function $\lambda(x, y, z)=(x-y-z)^{2}-4 y z$

$$
\Delta_{4}=-\frac{1}{16} \lambda\left(s_{12} s_{34}, s_{13} s_{24}, s_{14} s_{23}\right)
$$

PS unit cube paramtrisation exists [Gehrmann-De Rider,Gehrmann,Heinrich'04]

- For five-paricle PS maping on hypercube we need to solve $\Delta_{5}=0$, parametrisation with lots of square roots [Heinrich'06]

$$
\begin{aligned}
\Delta_{5}= & \frac{1}{16}\left(s_{14} s_{15} s_{23} s_{25} s_{34}+s_{13} s_{15} s_{24} s_{25} s_{34}-s_{13} s_{14} s_{25}^{2} s_{34}\right. \\
& \left.-s_{15}^{2} s_{23} s_{24} s_{34}+\ldots-s_{12} s_{13} s_{23} s_{45}^{2}\right)
\end{aligned}
$$

Ways to evaluate single-scale integrals

- Using definition of the hypergeometric function, for more complicated integrals using HyperInt package
\checkmark Analytical expression from the begining
\boldsymbol{X} Integral is free from singularities, to expand in ε under the integral sign
X Only generalized polylogarithms (GPL) and linear reducible denominators
\boldsymbol{X} Difficult to manipulate with expressions containing GPL of higher weights
- Mellin-Barnes representation
\checkmark Can be applied to divergent integrals
X Only low dimensioanal integrals can be calculated analytically
- Dimensional Recurrence Relations (DRR)

X Difficult to construct homogeneos solution for coupled integrals
\boldsymbol{X} Solution is numerical, needs PSLQ and known basis
\checkmark Precision is very high and many orders of expansion in ε accessible easily

On the way to the final answer

- Five-particle phase-space integrals: real \otimes real

- Four-particle phase-space integrals: virtual \otimes real

- Three-particle phase-space integrals: virtual \otimes real and virtual \otimes virtual

- Two-particle phase-space integrals: virtual \otimes real and virtual \otimes virtual

Dimensional recurrence relations and $1 \rightarrow 5$ PS integrals

Lowering DRR

Using integral representation trough invariants for arbitrary D we can perform shift $D \rightarrow D+2$:

$$
\begin{aligned}
I_{n}^{(D)} & =\prod_{k=1}^{n-1} \Omega_{D-k} \int \prod_{i<j} d s_{i j}\left(\Delta_{n}\right)^{\frac{D-n-1}{2}} \Theta\left(\Delta_{n}\right) \delta\left(1-s_{12 \ldots n}\right)\left[f\left(s_{i j}\right)\right] \\
I_{n}^{(D+2)} & =\prod_{k=1}^{n-1} \Omega_{D-k} \int \prod_{i<j} d s_{i j}\left(\Delta_{n}\right)^{\frac{D-n-1}{2}} \Theta\left(\Delta_{n}\right) \delta\left(1-s_{12 \ldots n}\right)\left[\frac{2 \pi}{D} \Delta_{n} f\left(s_{i j}\right)\right]
\end{aligned}
$$

Rewriting integrand of $D+2$ dimensional inegral as D-dimensional one with additional factor, we can rewrite $D+2$ dimensional integral as a linear combination of D - dimensional integrals with $f \rightarrow f^{\prime}$:

$$
f^{\prime}\left(s_{i j}\right)=\frac{2 \pi}{D} \Delta_{n} f\left(s_{i j}\right)
$$

IBP relations for cut integrals: definition

Reverse unitarity allows us apply to integration of phase-space integrals methods developed for loop integrals [Anastasiou,Melnikov'02]
We define cut propagators

$$
\delta\left(q^{2}\right) \theta\left(q_{0}\right) \rightarrow \mathcal{C}\left(q^{2}\right)=\frac{1}{2 \pi i} \operatorname{Disc} \frac{1}{q^{2}}=\frac{1}{2 \pi i}\left(\frac{1}{q^{2}+i 0}-\frac{1}{q^{2}-i 0}\right)
$$

Same differentiation rules as for ordinary propagators:

$$
\frac{\partial}{\partial q_{\mu}}\left[\mathcal{C}\left(q^{2}\right)\right]^{a}=-2 a \cdot q_{\mu}\left[\mathcal{C}\left(q^{2}\right)\right]^{a+1}
$$

But we nullify integrals with cut propagators in the negative powers

$$
\left[\mathcal{C}\left(q^{2}\right)\right]^{-a}=0, \quad \forall a=0,1,2, \ldots
$$

Can relate each PS integral with corresponding loop integral and apply IBP reduction with small modifications

Master integrals basis for PS and loop integrals

- Four-loop propagator master integrals basis contains 28 elements [Baikov,Chetyrkin'10] [Lee,Smirnov,Smirnov'12]
- Not all of them could have five-particle cut, but some could be cut in more than one different way, total number of PS integrals is 31
- From the simplest. .

F_{1}

F_{2}

F_{3}
- ... to the most complicated

Constructing DRR system for PS integrals

- Constructed lowering dimensional recurrence relations [Tarasov'96] for all 31 master integrals using package LiteRed [Lee'12]
- Integrals with cuts reduced using FIRE 5 package [Smirnov'14]
- After reduction as in the loop-integral case each sector contains not more than a single master integral
- Thus, system have triangular form and drastically simplifies calculations

$$
F_{i}(\nu+1)=c_{i i} F_{i}(\nu)+\left[\sum_{j=1}^{i-1} c_{i j} F_{j}(\nu)\right], \quad \nu=\frac{D}{2}
$$

- Homogeneous system decouple into the set of single equations

$$
\mathcal{H}_{i}(\nu+1)=c_{i i} \mathcal{H}_{i}(\nu)
$$

- Large number of problems have been solved due to this property using DRR [Tarasov'00] [Lee'09;Lee,Terekhov'10;Lee,Smirnov,Smirnov'10-11]

DRA method: solving DRR system

- General solution of triangular system can be written as

$$
F_{i}(\nu)=\omega_{i}(\nu) \mathcal{H}_{i}(\nu)+\mathcal{R}_{i}(\nu)
$$

$\mathcal{H}_{i}(\nu)$ - homogeneous solution, from the diagonal matrix element
$\mathcal{R}_{i}(\nu)$ - partial solution, depends only on integrals from subsectors
$\omega_{i}(\nu)$ - periodic function to be fixed using independent methods

DRA: Dimensional Recurence and Analyticity [Lee'00]

Analize singularities of all the ingredients $\mathcal{H}, \mathcal{R}, \omega, F$ and fix periodic function

- To find solution basic stripe $[\nu, \nu+1)$ should be fixed, proper choice can greatly simplify evaluation
- Position of poles and their multiplicity for function $F_{i}(\nu)$ on a basic stripe should be known in advance

Constructing main ingridients

- For the case of single integral in sector homogeneous system decouples into first order difference equations

$$
\mathcal{H}_{i}(\nu+1)=c_{i i}(\nu) \mathcal{H}_{i}(\nu)
$$

- For $c_{i i}$ rational function of ν in form:

$$
c_{i i}(\nu)=c \frac{\left(\nu-a_{1}\right)\left(\nu-a_{2}\right) \ldots\left(\nu-a_{A}\right)}{\left(\nu-b_{1}\right)\left(\nu-b_{2}\right) \ldots\left(\nu-b_{B}\right)}
$$

- We can write one of the possible solutions explicitly:

$$
\mathcal{H}(\nu)=c^{\nu} \frac{\Gamma\left(\nu-a_{1}\right) \Gamma\left(\nu-a_{2}\right) \ldots \Gamma\left(\nu-a_{A}\right)}{\Gamma\left(\nu-b_{1}\right) \Gamma\left(\nu-b_{2}\right) \ldots \Gamma\left(\nu-b_{B}\right)}
$$

- Partial solution for high precision numerical evaluation can be constructed from the known DRR system and provided set of homogeneous solutions using package DREAM [Lee,Mingulov'17]

Last step - to fix periodic function $\omega(\nu)$

Fixing periodic function

From periodic functions to unknown coefficients

- Once we know $\mathcal{H}_{i}(\nu)$ and $\mathcal{R}(\nu)$ we can analyze their singularities in the fixed stripe, periodic function $\omega(\nu)$ can be thought to be a function of the complex variable $z=e^{2 i \pi \nu}$
- If all the functions $\mathcal{H}_{i}(\nu), \mathcal{R}(\nu), F_{i}(\nu)$ have only finite number of singular points in the stripe, we can fix $\omega(\nu)$ from finite number of terms of its Laurent series expansion
- Need to know singularities of $F_{i}(\nu)$ in the stripe, in some cases possible to choose a stripe such $F_{i}(\nu)$ is holomorphic, e.g.:
- $\nu \in[-2,0)$ - fully massive tadpoles, no IR divergencies
- $\nu \in[6,8)$ - phase-space integrals, no UV divergencies
- For loop integrals we can use SDAnalize from FIESTA [Smirnov,Smirnov'11] to find poles of $F_{i}(\nu)$ and their multiplicity to construct ansatz for $\omega(\nu)$, for poles z_{1}, z_{2}, \ldots with multiplicities a_{1}, a_{2}, \ldots :

$$
\omega(\nu)=c_{0}+\sum_{k=1}^{a_{1}} \frac{c_{k, 1}}{\left(e^{2 i \pi \nu}-z_{1}\right)^{k}}+\sum_{k=1}^{a_{2}} \frac{c_{k, 2}}{\left(e^{2 i \pi \nu}-z_{2}\right)^{k}}+\ldots
$$

Periodical conditions fixing in PS integrals

- Easy to find stripe, where $F_{i}(\nu)$ holomorphic, hence only single constant need to be fixed
- Furthermore $F_{i}(\nu)$ holomorphic in the whole infinite plane in positive direction, constant can be fixed from assymptotics at infinity
- Assymptotics at infinity can be obtained using Laplace method for the integral in the form

$$
I=\int_{\Omega} d x h(x) e^{\lambda \varphi(x)}
$$

- If $\max \varphi(x)=\varphi(\bar{x})$ and \bar{x} is interior point of Ω, then integral I can be aproximates for $\lambda \rightarrow \infty$ by:

$$
I=e^{\lambda \varphi(\bar{x})}\left(\frac{2 \pi}{\lambda}\right)^{k / 2} \frac{h(\bar{x})}{\sqrt{\left|\operatorname{det} \varphi_{x x}(\bar{x})\right|}}+\mathcal{O}\left(\frac{1}{\lambda}\right)
$$

Laplace method for PS integrals

- From the integral over invariants we can obtain asymptotics:

$$
F_{i}(\nu \rightarrow \infty)=\left(\prod_{k=1}^{n-1} \Omega_{2 \nu-k}\right) \Delta_{n}(\bar{x})^{\nu}\left(\frac{\pi}{\nu}\right)^{\frac{n(n-1)-2}{4}}\left(\mathcal{C}_{i}(\bar{x})+\mathcal{O}\left(\nu^{-1}\right)\right)
$$

- Point \bar{x} is a maximum of Δ_{n}

- n-particle Gram determinant equal to the volume of n-hedron
- In the limit $D \rightarrow \infty$ maximal volume corresponds to the reguler n-hedron
- Angles between all pairs of vectors are equal

$$
s_{i i}=0, s_{i j}=\frac{2}{n(n-1)}
$$

- All integrals have same assymptotics upto the constant \mathcal{C}_{i}

Asymptotics of the $1 \rightarrow 5$ PS integrals

- For the five-particle PS integrals we can find assymptotics of all the homogeneous solutions using function from DREAM package
- Asymptotics of the partial solution is equal to asymptotics of integrals from subsectors
- In our case we checked that all $\mathcal{H}_{i}, i>1$ are growing exponentially faster then full solution

$$
\lim _{\nu \rightarrow \infty} \frac{\mathcal{H}_{i}(\nu)}{F_{i}(\nu)}=\infty
$$

- Only option for periodic function is to be equal zero, we fixed all ingridients and can obtain numerical results with high precision

$$
\mathcal{H}_{1}(\nu)=\frac{\pi^{4 \nu} \Gamma(\nu-1)^{4}}{(2 \pi)^{4} \Gamma(4(\nu-1)) \Gamma(5(\nu-1))}, \mathcal{H}_{2}=\mathcal{H}_{3}=\ldots=\mathcal{H}_{31}=0 ;
$$

Numerical results and PSLQ reconstruction

- Using DREAM package we obtained numerical values for all 31 integrals with accuracy about 2000 digits
- To reconstruct analytical expression we apply PSLQ algorithm with a basis constructed from multiple zeta values(MZV) up to weight 12
- Sample result for the most complicated integral up to weight 6:

$$
\begin{aligned}
F_{31} & =\frac{7}{9 \varepsilon^{5}}-\frac{17}{18 \varepsilon^{4}}+\frac{1}{\varepsilon^{3}}\left(-\frac{143}{9}-\frac{125}{9} \zeta_{2}\right)+\frac{1}{\varepsilon^{2}}\left(\frac{902}{9}+\frac{133}{6} \zeta_{2}-\frac{236}{3} \zeta_{3}\right) \\
& +\frac{1}{\varepsilon}\left(-\frac{4190}{9}+\frac{716}{3} \zeta_{2}+\frac{1418}{9} \zeta_{3}-\frac{265}{6} \zeta_{2}^{2}\right) \\
& +\frac{16892}{9}-\frac{4709}{3} \zeta_{2}+\frac{9718}{9} \zeta_{3}+\frac{3373}{20} \zeta_{2}^{2}+1228 \zeta_{3} \zeta_{2}-\frac{17612}{9} \zeta_{5} \\
& +\varepsilon\left(-\frac{63902}{9}+\frac{22181}{3} \zeta_{2}-\frac{68062}{9} \zeta_{3}-\frac{377}{5} \zeta_{2}^{2}-\frac{23666}{9} \zeta_{3} \zeta_{2}+\frac{48610}{9} \zeta_{5}-\frac{688249}{1890} \zeta_{2}^{3}+\frac{27128}{9} \zeta_{3}^{2}\right)
\end{aligned}
$$

Integrals with virtual corrections

Warm up: two-particle phase-space integrals

Situation becomes more complicated:

On top of the complicated IR srtucture of phase-space integration, integrals with virtual corrections have UV divergencies from the loop integration

- All virtual-virtual integrals are trivial and reducible, due to one-loop part beeing simply one-loop propagator
- To calculate virtual-real intergals we integrate three-loop massless form-factor over two-partile PS

1. We prepare system of DRR for two-particle cut integrals and solve it up to finite number of unknown periodic functions
2. Using results for three-loop form-factor in the form of the solution of DRR [Lee,Smirnov,Smirnov'10] we integrate it over PS and fix unknown functions

Three-particle phase-space integrals

Calculation flow:

1. Solve DE for loop integrals as series in ε near $d=4-2 \varepsilon$
2. Using DRR transform it to $d=6-2 \varepsilon$, where only UV divergencies survive
3. For cross-check transform to $d=8-2 \varepsilon$
4. Integrate each term of ε-expansion using HyperInt
[Panzer'14]
5. With the help of DRR for the cut integrals convert them to $d=4-2 \varepsilon$

For virtual \otimes virtual contribution virtual parts are known for arbitrary d in terms of hypergeometric functions ${ }_{2} F_{1}$ and ${ }_{3} F_{2}$

Two-loop boxes with one off-shell leg

Results up to finite-part (weight four)
Expressible through GPL of two variables $y=\frac{s_{13}}{s_{123}}$ and $z=\frac{s_{23}}{s_{123}}$ [Gehrmann,Remiddi'01]

- System of DE reducible to ε-form using Fuchsia

$$
\partial f_{i}=M_{i, j}(\varepsilon, y, z) f_{j} \quad \rightarrow \quad \partial g_{i}=\varepsilon M_{i j}^{\prime}(y, z) g_{j}, \quad f_{i}=T_{i j}(\varepsilon, y, z) g_{j}
$$

- Basis of integrals g_{i} have uniform transcendental weight, system decouples and can be easily integrated oder by order in ε using properties of GPL

$$
g_{i}\left\{\varepsilon^{n}\right\}=\int M_{i j}^{\prime} g_{j}\left\{\varepsilon^{n-1}\right\} d y+\mathcal{C}_{i n}(z)
$$

DE for double box: fixing boundary conditions

- Planar topologies have only branch points $y=0$ and $z=0$, other points $y=1, y=1-z$ and $y=-z$ are regular. Regularity reqirement can be used to fix boundary conditions

$$
\partial_{y} f_{i}=\left(\frac{A_{i j}(y, z)}{1-y}+\frac{B_{i j}(y, z)}{1-y-z}+\frac{C_{i j}(y, z)}{y+z}+R_{i j}(y, z)\right) f_{j}
$$

- Taking limits and nullifying all regular terms we obtain linear systems:

$$
0=\left.(1-y) \partial_{y} f_{i}\right|_{y \rightarrow 1}=\left.A_{i j}(y, z) f_{j}\right|_{y \rightarrow 1}
$$

- Nonplanar topologies have only branch points $y=0, z=0$ and $y=1-z$, other points $y=1$ and $y=-z$ are regular, and can be used for initial conditions fixing

Conclusion

1. $1 \rightarrow 5$

- Constructed solution of DRR, results are reconstructed using PSLQ

2. $1 \rightarrow 4$

- Needs further investigation

3. $1 \rightarrow 3$

- virtual-virtual contribution calculated using DRR for virtual part and direct integration over PS in $d=6-2 \varepsilon$
- For virtual-real contribution constructed solution for planar two-loop boxes with one off-shell leg to be integrated over PS. Nonplanar topologies to be solved separately.

4. $1 \rightarrow 2$

- Constructed solution of DRR, results are reconstructed using PSLQ

Thank you for attention!

