Analytical calculation of phase-space integrals
in massless QCD
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Motivation



Fully-inclusive and semi-inclusive processes in QCD

» Deep-inelastic scattering

» Sum rules MINCER
» Fixed moments MINCER
» Full z or n dependence Im TH
» cte~ annihilation
h
e+
. » Total crossection MINCER
» Fixed moments PS integration/number
v, Z
» Full z or n dependence PS int/function
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Phase-space integrals



Phase-space integration in a nutshell

Energy

positive 1

/ [1d°powD)o(E:) | 6 (g —p1— = pa) f(i - py)
=1

On-shellness Momentum Propagators
condition conservation

Important features:
» Very complicted integration domain
» Propagators may contain singularities:
collinear (53; - 5;) — 0, partons emitted at a small angle
infrared F/; — 0, very low energy massless partons
» The enormous number of momenta components to be integrated directly
» Function f(...) and hence propagators are functions of invariants
Sijk... = (pi + pj +pr + ... )? formed by scalar products only
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Invariant phase-space integration

Integrals of our interest have form:

I, = / (H dei) f(pi-pj)

From momentum integration to eplicit integration over scalar products

n_1 D—n—1
I, = H Qp_i / HdSij (An) 2 O(An)d (1= s12...0) f(545)
k=1 i<J
We define Gramm determinant for n massless partons momenta:
0 s12 -+ S
—1)n+1 812 0 cee Sop IrE
] I e
2 : : . : T (5)
Sin  S2n ¢ 0
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Complications due to the Gramm determinant

» Two- and three-particle PS: no constraints from the theta-function ©(A,,)

1
2
Ay = 1312, As = 1312513823

» Four-particle PS depends on Kallén function \(z,y,2) = (v —y — 2)? — 4yz
1
Ay = —E)\(812834,513824,814823)

PS unit cube paramtrisation exists [Gehrmann-De Rider,Gehrmann,Heinrich'04]

» For five-paricle PS maping on hypercube we need to solve A; =0,
parametrisation with lots of square roots [Heinrich'06]

1
2
A5 = E(814S15823825534 + S$13515524525834 — S13514595534

2 2
— 575523524834 + ... — $12513523575)
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Ways to evaluate single-scale integrals

» Using definition of the hypergeometric function, for more complicated
integrals using HyperInt package

‘/ Analytical expression from the begining
X Integral is free from singularities, to expand in € under the integral sign
X Only generalized polylogarithms (GPL) and linear reducible denominators

X Difficult to manipulate with expressions containing GPL of higher weights
» Mellin-Barnes representation
 Can be applied to divergent integrals

X Only low dimensioanal integrals can be calculated analytically

» Dimensional Recurrence Relations (DRR)
X Difficult to construct homogeneos solution for coupled integrals

X Solution is numerical, needs PSLQ and known basis

o/ Precision is very high and many orders of expansion in e accessible easily
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On the way to the final answer

P Five-particle phase-space integrals: real®real

» Four-particle phase-space integrals: virtual®real

N
o il

» Three-particle phase-space integrals: virtual®real and virtual®virtual

> Two-particle phase-space integrals: virtual®real and virtual®virtual
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Dimensional recurrence relations
and 1 — 5 PS integrals



Lowering DRR

Using integral representation trough invariants for arbitrary D we can perform
shift D — D + 2:

n—1 Deno1
1) = T 2 / TT s (An) “F0(A0)5 (1 = s12..0) [ (1))
k=1 i<j
n—1
D—n—1 2
I'r(zD+2) — H QD—k/HdSij (An) 2 @(An)5(1 — 812.“.,7,) |:D7TA,If(§U):|
k=1 i<j

Rewriting integrand of D + 2 dimensional inegral as D-dimensional one with
additional factor, we can rewrite D + 2 dimensional integral as a linear
combination of D - dimensional integrals with f — [’

f/(sij) = %Anf(sij)
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IBP relations for cut integrals: definition

Reverse unitarity allows us apply to integration of phase-space integrals methods
developed for loop integrals [Anastasiou,Melnikov'02]
We define cut propagators

1 1 1 1 1
2 2\ _ R _
AT)@0) = A7) = 55 Discm = 5 <q2 TP z-o)

Same differentiation rules as for ordinary propagators:

0
dq,

+1
[C(@)]" = ~2a-q.[C(a*)]"
But we nullify integrals with cut propagators in the negative powers

[C@®)] =0, Ya=0,1,2,...

Can relate each PS integral with corresponding loop integral and apply IBP
reduction with small modifications
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Master integrals basis for PS and loop integrals

» Four-loop propagator master integrals basis contains 28 elements
[Baikov,Chetyrkin'10] [Lee,Smirnov,Smirnov'12]

» Not all of them could have five-particle cut, but some could be cut in more
than one different way, total number of PS integrals is 31

» From the simplest. ..

F I F3
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Constructing DRR system for PS integrals

Constructed lowering dimensional recurrence relations [Tarasov'96] for all 31
master integrals using package LiteRed [Lee'12]

Integrals with cuts reduced using FIRE 5 package [Smirnov'14]

After reduction as in the loop-integral case each sector contains not more
than a single master integral

Thus, system have triangular form and drastically simplifies calculations

Fi(v+1)=ciF(v) + | > e F(v)|, v=

Homogeneous system decouple into the set of single equations
Hi(v +1) = ciHi(v)

Large number of problems have been solved due to this property using DRR
[Tarasov’'00] [Lee'09;Lee, Terekhov'10;Lee,Smirnov,Smirnov’'10-11]
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DRA method: solving DRR system

P General solution of triangular system can be written as

FL'(I/) = wi(l/)Hi(l/) + Rl(l/)

H;(v) - homogeneous solution, from the diagonal matrix element
Ri(v) - partial solution, depends only on integrals from subsectors
w;(v) - periodic function to be fixed using independent methods

DRA: Dimensional Recurence and Analyticity [Lee’09]

Analize singularities of all the ingredients H, R, w, F' and fix periodic function

J

» To find solution basic stripe [v, v + 1) should be fixed, proper choice can
greatly simplify evaluation

» Position of poles and their multiplicity for function F;(v) on a basic stripe
should be known in advance
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Constructing main ingridients

» For the case of single integral in sector homogeneous system decouples into

first order difference equations
Hi(l/ + ].) = (,”(I/)Hz(l/)
» For ¢;; rational function of v in form:

ess(v) = C(l/— a1)(v—az)...(v—aa)
" (v—">b1)(v—1bs)...(v—bg)

» We can write one of the possible solutions explicitly:

JWw—a)'(v—az)...I'(v—aa)
c
T(v—b0)T(v—"09)...T(v —bp)
» Partial solution for high precision numerical evaluation can be constructed

from the known DRR system and provided set of homogeneous solutions
using package DREAM [Lee Mingulov'17]

H(v) =

Last step - to fix periodic function w(v)
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Fixing periodic function



From periodic functions to unknown coefficients

» Once we know H;(r) and R(v) we can analyze their singularities in the fixed
stripe, periodic function w(v) can be thought to be a function of the
complex variable z = 2™

» If all the functions H;(v), R(v), F;(v) have only finite number of singular
points in the stripe, we can fix w(v) from finite number of terms of its
Laurent series expansion

» Need to know singularities of F;(1) in the stripe, in some cases possible to
choose a stripe such F;(v) is holomorphic, e.g.:

» v € [—2,0) - fully massive tadpoles, no IR divergencies
» v € [6,8) - phase-space integrals, no UV divergencies

» For loop integrals we can use SDAnalize from FIESTA [Smirnov,Smirnov'11] to
find poles of F;(v) and their multiplicity to construct ansatz for w(v), for
poles 21, 23, ... with multiplicities a1, ao, .. .:

az

ay
Ck,1 Ck,2
— e S + E — +...
W(V) co + ]; (62z7ry o Zl)k = (62171'11 o Z2)k'
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Periodical conditions fixing in PS integrals

Easy to find stripe, where F;(r) holomorphic, hence only single constant
need to be fixed

Furthermore F;(v) holomorphic in the whole infinite plane in positive
direction, constant can be fixed from assymptotics at infinity

Assymptotics at infinity can be obtained using Laplace method for the
integral in the form

I:/d:vh(x)eks"(m)
Q

If max ¢(x) = ¢(x) and Z is interior point of €2, then integral I can be
aproximates for A — oo by:

k/2 _
[ _ Ae@ (2”) )R <1)
A | det @, (Z)] A
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Laplace method for PS integrals

» From the integral over invariants we can obtain asymptotics:

n(n—1)—2

n—1
Fi(v — 00) = (H 92k> An(7) (f) (@) + oY)
k=1

v

» Point Z is a maximum of A,

» n-particle Gram determinant equal to the volume of
n-hedron

» In the limit D — oo maximal volume corresponds to
the reguler n-hedron

» Angles between all pairs of vectors are equal
2
nin—1)

» All integrals have same assymptotics upto the
constant C;

Sii — 07 Sij =
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Asymptotics of the 1 — 5 PS integrals

For the five-particle PS integrals we can find assymptotics of all the
homogeneous solutions using function from DREAM package

Asymptotics of the partial solution is equal to asymptotics of integrals from
subsectors

In our case we checked that all H;,7 > 1 are growing exponentially faster
then full solution

Only option for periodic function is to be equal zero, we fixed all ingridients
and can obtain numerical results with high precision

aT(v — 1)

@AW - DTG —1)) 2= = - =Ha1 =0,

Hl(l/) =
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Numerical results and PSLQ reconstruction

» Using DREAM package we obtained numerical values for all 31 integrals with
accuracy about 2000 digits

» To reconstruct analytical expression we apply PSLQ algorithm with a basis
constructed from multiple zeta values(MZV) up to weight 12

» Sample result for the most complicated integral up to weight 6:

7 17 1 143 125 1 902 133 236
F31 = —/ — 4+7 - — = C2 +72 — + — (2 — —(3
9e® 18¢ £" 9 9 5 9 6 3

1 4190 716 1418 265 P
+- - +—Co+ — 3 - —¢3
€ 9 3 9 6

16892 4709 9718 3373 Py 17612
- —C2 + —— (3 + —— (5 +1228¢3{g — — (5
9 3 9 20 9
63902 22181 68062 377 o 23666 48610 688249 3 27128 2
+e| — Co — {3 — —¢5 — ¢3¢ + <5 — <o+ <3
9 5 1890 9
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Integrals with virtual corrections



Warm up: two-particle phase-space integrals

Situation becomes more complicated:

On top of the complicated IR srtucture of phase-space integration, integrals with
virtual corrections have UV divergencies from the loop integration

EPs

» All virtual-virtual integrals are trivial and reducible, due to one-loop part
beeing simply one-loop propagator

» To calculate virtual-real intergals we integrate three-loop massless
form-factor over two-partile PS
1. We prepare system of DRR for two-particle cut integrals and solve it up to
finite number of unknown periodic functions
2. Using results for three-loop form-factor in the form of the solution of DRR
[Lee,Smirnov,Smirnov’'10] we integrate it over PS and fix unknown functions
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Three-particle phase-space integrals

D=4
. —
:.: ------ DRR
e —
Differential
equations

Calculation flow:

1. Solve DE for loop integrals as series in € near d = 4 — 2¢

o kWb

D=6

integrate

integrate

J

For cross-check transform to d = 8 — 2¢

Integrate each term of g-expansion using HyperInt

. D=4

Final
result

Using DRR transform it to d = 6 — 2¢, where only UV divergencies survive

[Panzer'14]

With the help of DRR for the cut integrals convert them to d =4 — 2¢

For virtual®virtual contribution virtual parts are known for arbitrary d in terms

of hypergeometric functions o F and 3[%

[Gehrmann,Remiddi’01]
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Two-loop boxes with one off-shell leg

Results up to finite-part (weight four) J

Expressible through GPL of two variables y = 3%33 and z = 5%33 [Gehrmann,Remiddi’01]

5123

» System of DE reducible to e-form using Fuchsia [Gituliar,Magerya'17]

afz - ]\/[i,j (57 Y, Z)f] — agz - 5]\/[;7 (y Z)gj? fl = E] (Ea Y, 2)97

» Basis of integrals g; have uniform transcendental weight, system decouples
and can be easily integrated oder by order in & using properties of GPL

gile") = / Mg, {e" Yy + Conl2)
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DE for double box: fixing boundary conditions

» Planar topologies have only branch points 4y = 0 and z = 0, other points
y=1, y=1—2and y = —z are regular. Regularity reqirement can be used
to fix boundary conditions

al/fi - A”(y’z) + Bij(?/,Z) + Cij(y-, z)
17y 1,y72 y+z

+ Rij(y, Z)) fj
» Taking limits and nullifying all regular terms we obtain linear systems:

0=(1—y)0yfily—1 = Aij(y, 2) fily—1

» Nonplanar topologies have only branch points y =0,z =0 and y =1 — z,
other points y = 1 and y = —z are regular, and can be used for initial
conditions fixing

21/21



Conclusion

.1—=5

- Constructed solution of DRR, results are reconstructed using PSLQ

.1 —4

- Needs further investigation

.1 =3

- virtual-virtual contribution calculated using DRR for virtual part and direct
integration over PS in d =6 — 2¢

- For virtual-real contribution constructed solution for planar two-loop boxes
with one off-shell leg to be integrated over PS. Nonplanar topologies to be
solved separately.

.1 =2

- Constructed solution of DRR, results are reconstructed using PSLQ



Thank you for attention!
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