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Motivation



Fully-inclusive and semi-inclusive processes in QCD

I Deep-inelastic scattering

k
k′

q

p+q

pP

I Sum rules MINCER
I Fixed moments MINCER
I Full x or n dependence ImTµν

I e+e− annihilation

I Total crossection MINCER
I Fixed moments PS integration/number
I Full x or n dependence PS int/function
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Phase-space integrals



Phase-space integration in a nutshell
Energy
positive

On-shellness
condition

Momentum
conservation Propagators

Important features:
I Very complicted integration domain
I Propagators may contain singularities:

collinear (βi · βj)→ 0, partons emitted at a small angle
infrared Ei → 0, very low energy massless partons

I The enormous number of momenta components to be integrated directly
I Function f(. . . ) and hence propagators are functions of invariants
sijk... = (pi + pj + pk + . . . )2 formed by scalar products only
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Invariant phase-space integration

Integrals of our interest have form:

In =
∫ (∏

i

dDpi

)
f(pi · pj)

From momentum integration to eplicit integration over scalar products

In =
n−1∏
k=1

ΩD−k
∫ ∏

i<j

dsij
(
∆n

)D−n−1
2 Θ

(
∆n

)
δ (1− s12...n) f(sij)

We define Gramm determinant for n massless partons momenta:

∆n = (−1)n+1

2n

∣∣∣∣∣∣∣∣∣
0 s12 · · · s1n
s12 0 · · · s2n

...
...

. . .
...

s1n s2n · · · 0

∣∣∣∣∣∣∣∣∣ , Ωn = 2π n2
Γ
(
n
2
)
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Complications due to the Gramm determinant

I Two- and three-particle PS: no constraints from the theta-function Θ(∆n)

∆2 = 1
4s

2
12, ∆3 = 1

4s12s13s23

I Four-particle PS depends on Källén function λ(x, y, z) = (x− y − z)2 − 4yz

∆4 = − 1
16λ(s12s34, s13s24, s14s23)

PS unit cube paramtrisation exists [Gehrmann-De Rider,Gehrmann,Heinrich’04]

I For five-paricle PS maping on hypercube we need to solve ∆5 = 0 ,
parametrisation with lots of square roots [Heinrich’06]

∆5 = 1
16(s14s15s23s25s34 + s13s15s24s25s34 − s13s14s

2
25s34

−s2
15s23s24s34 + . . .− s12s13s23s

2
45)
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Ways to evaluate single-scale integrals

I Using definition of the hypergeometric function, for more complicated
integrals using HyperInt package

3 Analytical expression from the begining

7 Integral is free from singularities, to expand in ε under the integral sign

7 Only generalized polylogarithms (GPL) and linear reducible denominators

7 Difficult to manipulate with expressions containing GPL of higher weights
I Mellin-Barnes representation

3 Can be applied to divergent integrals

7 Only low dimensioanal integrals can be calculated analytically
I Dimensional Recurrence Relations (DRR)

7 Difficult to construct homogeneos solution for coupled integrals

7 Solution is numerical, needs PSLQ and known basis

3 Precision is very high and many orders of expansion in ε accessible easily
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On the way to the final answer
I Five-particle phase-space integrals: real⊗real

I Four-particle phase-space integrals: virtual⊗real

I Three-particle phase-space integrals: virtual⊗real and virtual⊗virtual

I Two-particle phase-space integrals: virtual⊗real and virtual⊗virtual

6 / 21



Dimensional recurrence relations
and 1 → 5 PS integrals



Lowering DRR

Using integral representation trough invariants for arbitrary D we can perform
shift D → D + 2:

I(D)
n =

n−1∏
k=1

ΩD−k
∫ ∏

i<j

dsij
(
∆n

)D−n−1
2 Θ

(
∆n

)
δ (1− s12...n) [f(sij)]

I(D+2)
n =

n−1∏
k=1

ΩD−k
∫ ∏

i<j

dsij
(
∆n

)D−n−1
2 Θ

(
∆n

)
δ (1− s12...n)

[
2π
D

∆nf(sij)
]

Rewriting integrand of D + 2 dimensional inegral as D-dimensional one with
additional factor, we can rewrite D + 2 dimensional integral as a linear
combination of D - dimensional integrals with f → f ′:

f ′(sij) = 2π
D

∆nf(sij)
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IBP relations for cut integrals: definition

Reverse unitarity allows us apply to integration of phase-space integrals methods
developed for loop integrals [Anastasiou,Melnikov’02]
We define cut propagators

δ(q2)θ(q0)→ C(q2) = 1
2πiDisc 1

q2 = 1
2πi

(
1

q2 + i0 −
1

q2 − i0

)
Same differentiation rules as for ordinary propagators:

∂

∂qµ

[
C(q2)

]a = −2a · qµ
[
C(q2)

]a+1

But we nullify integrals with cut propagators in the negative powers[
C(q2)

]−a = 0, ∀a = 0, 1, 2, . . .

Can relate each PS integral with corresponding loop integral and apply IBP
reduction with small modifications
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Master integrals basis for PS and loop integrals
I Four-loop propagator master integrals basis contains 28 elements

[Baikov,Chetyrkin’10] [Lee,Smirnov,Smirnov’12]

I Not all of them could have five-particle cut, but some could be cut in more
than one different way, total number of PS integrals is 31

I From the simplest. . .

F1 F2 F3

I . . . to the most complicated

F29 F30 F31
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Constructing DRR system for PS integrals

I Constructed lowering dimensional recurrence relations [Tarasov’96] for all 31
master integrals using package LiteRed [Lee’12]

I Integrals with cuts reduced using FIRE 5 package [Smirnov’14]

I After reduction as in the loop-integral case each sector contains not more
than a single master integral

I Thus, system have triangular form and drastically simplifies calculations

Fi(ν + 1) = ciiFi(ν) +

i−1∑
j=1

cijFj(ν)

 , ν = D

2

I Homogeneous system decouple into the set of single equations

Hi(ν + 1) = ciiHi(ν)

I Large number of problems have been solved due to this property using DRR
[Tarasov’00] [Lee’09;Lee,Terekhov’10;Lee,Smirnov,Smirnov’10-11]
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DRA method: solving DRR system

I General solution of triangular system can be written as

Fi(ν) = ωi(ν)Hi(ν) +Ri(ν)

Hi(ν) - homogeneous solution, from the diagonal matrix element

Ri(ν) - partial solution, depends only on integrals from subsectors

ωi(ν) - periodic function to be fixed using independent methods

DRA: Dimensional Recurence and Analyticity [Lee’09]

Analize singularities of all the ingredients H,R, ω, F and fix periodic function

I To find solution basic stripe [ν, ν + 1) should be fixed, proper choice can
greatly simplify evaluation

I Position of poles and their multiplicity for function Fi(ν) on a basic stripe
should be known in advance
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Constructing main ingridients
I For the case of single integral in sector homogeneous system decouples into

first order difference equations

Hi(ν + 1) = cii(ν)Hi(ν)
I For cii rational function of ν in form:

cii(ν) = c
(ν − a1)(ν − a2) . . . (ν − aA)
(ν − b1)(ν − b2) . . . (ν − bB)

I We can write one of the possible solutions explicitly:

H(ν) = cν
Γ(ν − a1)Γ(ν − a2) . . .Γ(ν − aA)
Γ(ν − b1)Γ(ν − b2) . . .Γ(ν − bB)

I Partial solution for high precision numerical evaluation can be constructed
from the known DRR system and provided set of homogeneous solutions
using package DREAM [Lee,Mingulov’17]

Last step - to fix periodic function ω(ν)
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Fixing periodic function



From periodic functions to unknown coefficients
I Once we know Hi(ν) and R(ν) we can analyze their singularities in the fixed

stripe, periodic function ω(ν) can be thought to be a function of the
complex variable z = e2iπν

I If all the functions Hi(ν),R(ν), Fi(ν) have only finite number of singular
points in the stripe, we can fix ω(ν) from finite number of terms of its
Laurent series expansion

I Need to know singularities of Fi(ν) in the stripe, in some cases possible to
choose a stripe such Fi(ν) is holomorphic, e.g.:
I ν ∈ [−2, 0) - fully massive tadpoles, no IR divergencies
I ν ∈ [6, 8) - phase-space integrals, no UV divergencies

I For loop integrals we can use SDAnalize from FIESTA [Smirnov,Smirnov’11] to
find poles of Fi(ν) and their multiplicity to construct ansatz for ω(ν), for
poles z1, z2, . . . with multiplicities a1, a2, . . .:

ω(ν) = c0 +
a1∑
k=1

ck,1
(e2iπν − z1)k +

a2∑
k=1

ck,2
(e2iπν − z2)k + . . .
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Periodical conditions fixing in PS integrals

I Easy to find stripe, where Fi(ν) holomorphic, hence only single constant
need to be fixed

I Furthermore Fi(ν) holomorphic in the whole infinite plane in positive
direction, constant can be fixed from assymptotics at infinity

I Assymptotics at infinity can be obtained using Laplace method for the
integral in the form

I =
∫

Ω
dxh(x)eλϕ(x)

I If maxϕ(x) = ϕ(x̄) and x̄ is interior point of Ω, then integral I can be
aproximates for λ→∞ by:

I = eλϕ(x̄)
(

2π
λ

)k/2
h(x̄)√

|detϕxx(x̄)|
+O

(
1
λ

)
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Laplace method for PS integrals
I From the integral over invariants we can obtain asymptotics:

Fi(ν →∞) =
(
n−1∏
k=1

Ω2ν−k

)
∆n(x̄)ν

(π
ν

)n(n−1)−2
4 (

Ci(x̄) +O(ν−1)
)

I Point x̄ is a maximum of ∆n

I n-particle Gram determinant equal to the volume of
n-hedron

I In the limit D →∞ maximal volume corresponds to
the reguler n-hedron

I Angles between all pairs of vectors are equal

sii = 0, sij = 2
n(n− 1)

I All integrals have same assymptotics upto the
constant Ci
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Asymptotics of the 1 → 5 PS integrals

I For the five-particle PS integrals we can find assymptotics of all the
homogeneous solutions using function from DREAM package

I Asymptotics of the partial solution is equal to asymptotics of integrals from
subsectors

I In our case we checked that all Hi, i > 1 are growing exponentially faster
then full solution

lim
ν→∞

Hi(ν)
Fi(ν) =∞

I Only option for periodic function is to be equal zero, we fixed all ingridients
and can obtain numerical results with high precision

H1(ν) = π4νΓ(ν − 1)4

(2π)4Γ(4(ν − 1))Γ(5(ν − 1)) ,H2 = H3 = . . . = H31 = 0;
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Numerical results and PSLQ reconstruction

I Using DREAM package we obtained numerical values for all 31 integrals with
accuracy about 2000 digits

I To reconstruct analytical expression we apply PSLQ algorithm with a basis
constructed from multiple zeta values(MZV) up to weight 12

I Sample result for the most complicated integral up to weight 6:

F31 =
7

9ε5
−

17

18ε4
+

1

ε3

(
−

143

9
−

125

9
ζ2

)
+

1

ε2

(
902

9
+

133

6
ζ2 −

236

3
ζ3

)
+

1

ε

(
−

4190

9
+

716

3
ζ2 +

1418

9
ζ3 −

265

6
ζ

2
2

)
+

16892

9
−

4709

3
ζ2 +

9718

9
ζ3 +

3373

20
ζ

2
2 + 1228ζ3ζ2 −

17612

9
ζ5

+ ε

(
−

63902

9
+

22181

3
ζ2 −

68062

9
ζ3 −

377

5
ζ

2
2 −

23666

9
ζ3ζ2 +

48610

9
ζ5 −

688249

1890
ζ

3
2 +

27128

9
ζ

2
3

)
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Integrals with virtual corrections



Warm up: two-particle phase-space integrals
Situation becomes more complicated:

On top of the complicated IR srtucture of phase-space integration, integrals with
virtual corrections have UV divergencies from the loop integration

I All virtual-virtual integrals are trivial and reducible, due to one-loop part
beeing simply one-loop propagator

I To calculate virtual-real intergals we integrate three-loop massless
form-factor over two-partile PS

1. We prepare system of DRR for two-particle cut integrals and solve it up to
finite number of unknown periodic functions

2. Using results for three-loop form-factor in the form of the solution of DRR
[Lee,Smirnov,Smirnov’10] we integrate it over PS and fix unknown functions
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Three-particle phase-space integrals
D=4D=4 D=6

D=8

DRR DRR

integrate

integrate

Differential
equations

Final 
result

Calculation flow:

1. Solve DE for loop integrals as series in ε near d = 4− 2ε
2. Using DRR transform it to d = 6− 2ε, where only UV divergencies survive
3. For cross-check transform to d = 8− 2ε
4. Integrate each term of ε-expansion using HyperInt [Panzer’14]

5. With the help of DRR for the cut integrals convert them to d = 4− 2ε

For virtual⊗virtual contribution virtual parts are known for arbitrary d in terms
of hypergeometric functions 2F1 and 3F2 [Gehrmann,Remiddi’01]
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Two-loop boxes with one off-shell leg
Results up to finite-part (weight four)

Expressible through GPL of two variables y = s13
s123

and z = s23
s123

[Gehrmann,Remiddi’01]

1

2

3

I System of DE reducible to ε-form using Fuchsia [Gituliar,Magerya’17]

∂fi = Mi,j(ε, y, z)fj → ∂gi = εM ′ij(y, z)gj , fi = Tij(ε, y, z)gj

I Basis of integrals gi have uniform transcendental weight, system decouples
and can be easily integrated oder by order in ε using properties of GPL

gi{εn} =
∫
M ′ijgj{εn−1}d y + Cin(z)
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DE for double box: fixing boundary conditions

I Planar topologies have only branch points y = 0 and z = 0, other points
y = 1, y = 1− z and y = −z are regular. Regularity reqirement can be used
to fix boundary conditions

∂yfi =
(
Aij(y, z)

1− y + Bij(y, z)
1− y − z + Cij(y, z)

y + z
+Rij(y, z)

)
fj

I Taking limits and nullifying all regular terms we obtain linear systems:

0 = (1− y)∂yfi|y→1 = Aij(y, z)fj |y→1

I Nonplanar topologies have only branch points y = 0,z = 0 and y = 1− z,
other points y = 1 and y = −z are regular, and can be used for initial
conditions fixing
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Conclusion

1. 1→ 5
- Constructed solution of DRR, results are reconstructed using PSLQ

2. 1→ 4
- Needs further investigation

3. 1→ 3
- virtual-virtual contribution calculated using DRR for virtual part and direct

integration over PS in d = 6− 2ε
- For virtual-real contribution constructed solution for planar two-loop boxes

with one off-shell leg to be integrated over PS. Nonplanar topologies to be
solved separately.

4. 1→ 2
- Constructed solution of DRR, results are reconstructed using PSLQ



Thank you for attention!
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