Status of neutrino oscillations

Yury Kudenko

Institute for Nuclear Research, Moscow

Baldin ISHEPP XXIV, Dubna, Russia, September 17-22, 2018

OUTLINE

Neutrino oscillations

- 3-neutrino scheme
- running accelerator and reactor experiments
- future projects

□ Light sterile neutrinos

- neutrino anomalies
- new experimental tests

v oscillations and mixing

Standard Model: neutrinos are *massless* particles

Main goals of oscillation experiments

- CP violation in le Strength of CP violation in r	epton sector neutrino oscillations	$\begin{array}{c} \text{neutrinos} \\ & \\ V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \end{array}$	$\begin{array}{l} \textbf{quarks} \\ V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix} \end{array}$			
$J_{CP} = Im(U_{e1}U_{\mu 2}U_{e2}^{*}U_{\mu 1}^{*}) = Im$ = $cos\theta_{12}sin\theta_{12}cos^{2}\theta_{13}sin\theta_{13}sin\theta_{12}cos^{2}\theta_{13}sin\theta_{13}sin\theta_{13}sin\theta_{14$	(U _{e2} U _{μ3} U* _{e3} U* _{μ2}) θ ₁₃ cosθ ₂₃ sinθ ₂₃ sinδ _{CP} First indicatio	Quark sector J_{c} Lepton sector J_{c} n from T2K: δ_{CP} =	_{CP} ≈ 3×10 ⁻⁵ _{CP} ~ 0.02×sinδ _{CP} -π/2			
- Neutrino mass h	Norma v ₃ (NH) v ₂ v ₁	al hierarchy Inverted hierarchy λm_{32}^2 λm_{21}^2 ν_1 Δm_{21}^2 λm_{13}^2 ν_3				
- θ_{23} – maximal? If not, what octant ($\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$)?						
- Sterile neutri	nos	- 10 Septemb	or 2019			

Experimental methods

Current experiments

about 500 members 59 institutions from 11 countries

LONG-BASELINE NEUTRINO OSCILLATION EXPERIMENT

Super-K

Toyama Kamioka Mine Tokai

Tokyo/Narita Airport

Y.Kudenko

Tokyo

Y.Kudenko

Neutrino oscillations

19 September 2018

T2K data

P.Litchfield, ICHEP2018

Neutrino mode Antineutrino mode

 $\nu_{\mu} \rightarrow \nu_{e} + 1\pi$

Y.Kudenko

T2K data and expectation

Event rate				Systematic error			
Beam mode	Not Oscillated	Oscillated (maximal mixing) Observed		Beam mode	w/o ND280	ND280 constrained	
neutrino	1211.4	268.2	243		neutrino	14.5%	→ 4.9%
antineutrino	314.3	95.3	102		antineutrino	12.2%	→ 4.3%

Comula	Expectation, $\sin^2 \theta_{23} = 0.528$, $\delta =$				Observed	
Sample	$-\pi/2$	0	π	+π/2	Observed	
FHC 1R-µ	268.5	268.2	268.9	268.9	243	
RHC 1R-µ	95.5	95.3	95.8	95.5	102	disappearance
Sum of 1R-μ	364.0	363.5	364.7	364.5	345	
FHC 1R-e	73.8	61.6	62.2	50.0	75	
FHC $1R-e + d.e.$	6.9	6.0	5.8	4.9	15	appearance
RHC 1R-e	11.8	13.4	13.2	14.9	9	

T2K result

T2K v_e / anti- v_e

T2K v_e / anti- v_e + reactor θ_{13}

T2K result

CP-conservation hypothesis (sin $\delta_{CP} = 0, \pi$) excluded at 2σ level

- First hint for CP violation in the lepton sector
- T2K data favour $\delta_{CP} \sim -\pi/2$ and normal hierarchy

Future plans

T2K expected to accumulate 7.8x10²¹ POT around 2021 (now 3x10²¹ POT)

- Upgrade of near detectors to improve systematic uncertainties 18% (2011) → 9% (2014) → 5% (2018) → goal ≤4% (2021)
- Plan to increase the beam intensity up to 1 MW in 2021
- Beam power up to 1.3 MW in ~2026
- T2K-II: proposed extension up to 2026 for $20x10^{21}$ POT 3σ sensitivity to CP violation for $\delta_{CP} \sim -\pi/2$

J.Bian ICHEP2018

Neutrino beam: 8.85×10^{20} POTAntineutrino beam: 6.9×10^{20} POT

Far detector

Neutrino beam:

- Observe 113 events
- Expect 730 +38/-49(syst.) w/o oscillations

Antineutrino beam:

- Observe 65 events
- Expect 266 +12/-14(syst.) w/o oscillations

NOvA: v_e /anti- v_e

NOvA results

NOVA

Preliminary

Prospects for NOvA

OPERA: final result

 $v_{\mu} \rightarrow v_{\tau}$ appearance

PRL 120 (2018) 211801

10 v_{τ} events observed for 18×10^{19} POT Expected 6.4 events for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1.0$ Expected background 2.0 ± 0.4 events

Significance of ν_{τ} appearance 6.1 σ

OPERA: $\Delta m_{23}^2 = (2.7 + 0.7 - 0.6) \times 10^{-3} \text{ eV}^2$, assuming $\sin^2 2\theta_{23} = 1.0$

IceCube

Neutrinos have the first maximum of disappearance at about 25 GeV Energy threshold of Deep Core = 5 GeV

Data taking for 3 years

 $\Delta m_{32}^2 = (2.31 + 011 - 0.13) \times 10^{-3} \text{ eV}^2$

PRL 120 (2018) 071801

 $\sin^2\theta_{23} = 0.51 + 0.07 - 0.09$ for NH

Oscillation parameters: $\Delta m_{32}^2 - \sin^2 \theta_{23}$

M.Yokoyama ICHEP2018

Reactor experiments

Y.Kudenko

Oscillation results

Daya Bay

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^2| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2$ Liang Zhan, ICHEP2018

Future LBL Projects

- Reactor experiment JUNO

- Accelerator LBL experiment DUNE
- HyperKamiokande and T2HK

Reactor experiment JUNO China

66 institutions > 400 collaborators

Main target: Measurement of neutrino mass hierarchy

- 700 m deep underground
- 36 GW reactor power
- 53 km baseline -> oscillation

maximum θ_{12}

- 20 kton LS detector
- 3% energy resolution at 1MeV
- <1% energy scale uncertainty</p>

Y.Kudenko

JUNO goals

Main goal: determination of neutrino mass hierarchy

PRD 88, 013008 (2013)	Hierarchy discrimination power	With info on Δm ² _{µµ} from LBL expts
Statistics only	4σ	5σ
Realistic case	3σ	4σ

Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentiality
Δm^2_{21}	2.3%	KamLAND	0.59%
$\Delta m^2 = m_3^2 - rac{1}{2} \left(m_1^2 + m_2^2 ight) $	1.6%	MINOS, T2K	0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO	0.67%

Supernova neutrino Geoneutrinos Solar neutrinos

Y.Kudenko

d=43.5 m

Neutrino oscillations

20" PMT

LBNF/DUNE Project

Flagship FNAL project

Main goals: - discovery of CP violation in leptonic sector

- neutrino mass hierarchy at $>5\sigma$ level
- neutrino astronomy
- proton decay search

30 countries 161 institutions ~1000 collaborators

$$\begin{split} &\mathsf{E}_{\mathsf{p}} = 60\text{-}120 \; \text{GeV} \\ &\mathsf{Beam power} \; 1.2 \ \text{->} \; 2.4 \; \text{MW} \\ &\mathsf{On axis neutrino beam} \\ &\mathsf{E}_{\mathsf{V}} \sim 1\text{-} \; 6 \; \text{GeV} \\ &\mathsf{L} \text{=} 1300 \; \text{km from FNAL to} \\ &\mathsf{SURF}, \; \text{S.Dakota} \end{split}$$

Sensitivity to CP violation

Far detector 40 kt (4 x 10kt) LAr TPC Single and Dual phase detectors

2021 – installation of 1st far detector 2024 – 2 modules operational 2026 – deliver neutrino beam

Y.Kudenko

Hyper-Kamiokande project

Main goals:

- Search for CP violation
- Proton decay
- Neutrino astrophysics

Water tank 60 m(H) x 74m(D) Total volume 260 kt Fiducial volume 190 kt ~10xSuper-K 40000 50 cm ID PMTs PMT coverage 40% 6700 20 cm OD PMT's Photon sensitivity ~2 times better than Super-K Construction of 2nd tank in Korea (1-3 deg off axis, 2nd oscill. maximum) is under study

J-PARC

Y.Kudenko

T2HK (Tokai-to-Hyper-Kamiokande)

Near neutrino detector at 280 m from target

J-PARC neutrino beam 2.5°off-axis, peak energy power 485 kW Y.Kudenko

E_v (GeV)

600 MeV (oscillation maximum), current beam

Sensitivity to CP

Integrated beam power 1.3 MW x 10⁸ s \rightarrow 2.7 x 10²² POT with 30 GeV proton beam $sin^22\theta_{13} = 0.1$

Exclusion of δ =0 at 8 σ (for δ = - $\pi/2$) 5 σ (3 σ) significance for 57 (80)% of possible δ values

Expected sensitivity to CP

Significance for $\delta_{CP} = -\pi/2$

September 12th, 2018

Start of Hyper-Kamiokande

- Seed funding is allocated within 2019 fiscal year in Japan
- Construction will start in April 2020

Concerning the Start of Hyper-Kamiokande

Seed funding towards the construction of the next-generation water Cherenkov detector Hyper-Kamiokande has been allocated by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) within its budget request for the 2019 fiscal year. Seed fundings in the past projects usually lead to full funding in the following year, as it was the case for the Super-Kamiokande project.

The University of Tokyo pledges to ensure construction of the Hyper-Kamiokande detector commences as scheduled in April 2020. The University of Tokyo has made this decision in recognition of both the project's importance and value both nationally and internationally.

The neutrino research that lead to Nobel prizes for Special University Professor Emeritus Koshiba and Distinguished University Professor Kajita has entered a new era. The international community has demonstrated the need for Hyper-Kamiokande. The considerable expertise and achievements of the University of Tokyo and Japan, and unique and invaluable contributions from national and international collaborators will ensure the project will make significant contributions to the intellectual progress of the world.

Makoto Fonokin

Makoto Gonokami President, The University of Tokyo

Light sterile neutrinos

Y.Kudenko

MiniBooNe

$v_{\mu} \rightarrow v_{e}$ anti- $v_{\mu} \rightarrow$ anti- v_{e} L \approx 540 m Ev = 0.2-3 GeV

Y.Kudenko

Gallium anomaly

427 keV v (9.0%) 432 keV v (0.9%) 320 keV γ ⁵¹ V (stable) Detection pro	⁵¹ Cr (27.7 days) 7 keV v (81.6%) 2 keV v (8.5%) 9CESS: ν _e)) + ⁷¹ Ga →	³⁷ Ar (813 811 ⁵¹ Ge + e ⁻	35.4 days) keV ν (9.8%) keV ν (90.2%)		
	GAL	LEX	S	SAGE		
	m(Ga	a)= 30 t	m(G	a)=13 t		
Source	⁵¹ Cr -1	⁵¹ Cr -2	⁵¹ Cr	³⁷ Ar		
Intensity (Mci)	1.714	1.868	0.517	0.409		
$\mathbf{R} = (p_{exp}/p_{theory})$	$\boldsymbol{0.95\pm0.11}$	0.81 ± 0.11	0.95 ± 0.12	0.79 ± 0.10		
R _{comb}	0.88	± 0.08	0.86	± 0.08		
1.1 GALLEX 1	Cr1 S GALLEX Cr2	SAGE Cr	Δr			

 $\mathbf{R} = p_{exp} / p_{theory} = \mathbf{0.87 \pm 0.05}$

Neutrino oscillations

SAGE

Reactor anomaly

anti- $v_e \rightarrow anti-v_e$

39

Sterile neutrino?

v_e and anti- v_e disappearance

Global fit of reactor and Gallium data

arXiv:1512.02202

New MiniBooNe result

42

Neutrino oscillations

Y.Kudenko

Sterile v's: Daya Bay + MINOS+ Bugey-3

PRL117 (2016) 151801

 Daya Bay data 90% C.L. Allowed • Constrains Δm_{41}^2 (mainly 10⁻⁴ to – MiniBooNE 10^{-1} eV^2) and $\sin^2 2\theta_{14}$ 10 – MiniBooNE (⊽ mode) Bugey-3 data • constrains Δm_{41}^2 (mainly 10⁻¹ to 10 eV²) and $\sin^2 2\theta_{14}$ ∆m²₄₁ (eV²) ___01 MINOS data • Constrains Δm_{41}^2 (mainly 10⁻³ to $10^2 \,\mathrm{eV^2}$) and $\sin^2 \theta_{24}$ **10**⁻² Combined all three 90% C.L. (CL_s) Excluded **10**⁻³ • Constrains Δm_{41}^2 and - NOMAD KARMEN2 $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \cdot \sin^2 \theta_{24}$

Y.Kudenko

Sterile v's: IceCube

PRL 117 (2016) 071801

Ev = 320 GeV - 20 TeV

sterile neutrinos produce distortions of $\nu\mu$ + anti- $\nu\mu$ flux (energy and angle) in the range $0.01 \le \Delta m^2 \le 10 \text{ eV}^2$

1 year of data statistics limited

Result compatible with no-sterile hypothesis

Y.Kudenko

60- (a)

Data signal (ON-OFF)

Data background (OFF) MC 3v (H-M-V)

MC 3v (Daya Bay)

+ NEOS/H-M-V Systematic total

 NEOS/Daya Bay Systematic total

> (1.73 eV², 0.050) (2.32 eV², 0.142)

> > Prompt Energy [MeV]

/day/100 ke/

Events

Reactor Containment

Building

10 meter

neutrino detecto

NEOS: reactor anti-v disappearance

Korea, Reactor 2.8 GWPRL 118 (2017) 121802Core: \emptyset 3.1 m h=3.8 mDetector 1t LS + Gd, 24 m from reactor coreS/N ~ 22

No evidence for sterile neutrino with mass ~ 1 eV

Y.Kudenko

Neutrino-4

arXiv:1708.00421

SM-3 reactor, Dimitrovgrad

Detector on Earth surface Signal/background = 0.6

$\sim 6.5 - 11.5$ m from active zone

Best fit point of Reactor and Gallium anomalies excluded at 95% CL

DANSS experiment

arXiv:1804.0404

3.1 GW_{th} Kalinin Power Plant

Distance from the reactor core 10.7-12.7 m

Detector configuration

• 2500 scintillator strips with Gd containing coating for neutron capture

- Light collection with 3 WLS fibers
- Central fiber read out with individual SiPM
- Side fibers from 50 strips make a bunch of 100 on a PMT cathode = Module

5000 anti- v_e detected per day with < 3% cosmic background

DANSS result

arXiv:1804.0404

Result is based on 663x10³ events

The Reactor Anomaly best fit point (sin²2 θ_{14} = 0.14 Δm_{14}^2 = 2.3 eV²) is excluded at > 5 σ CL

STEREO experiment

ILL, Grenoble, France, 58.3 MW_{th} compact core \varnothing 40x80 cm

L.Bernard, ICHEP2018

- Detector 6 identical cells
- Gd loaded (0.2% in mass)
- $-V_{tot} = 2.2 \times 0.9 \times 0.9 \text{ m}^3$
- 15 mwe overburden
- Neutrino rate 396/day
- -First result based on 65.8 days of data taking

The first results using ratios of cells compatible with no oscillation, rejects the best fit of the Reactor Antineutrino Anomaly at 98.8% C.L.

Phase-I + Phase-II combined results (66+47) days reactor-ON (396 \pm 4) $\bar{\nu}_e$ day⁻¹

Preliminary result is compatible with no oscillation. The best fit of the Reactor Anomaly is rejected at 98%.

Daya Bay: anti-neutrino flux

PRL 118 (2017) 251801

This discrepancy gives an overestimation of predicted antineutrino flux by 7.8%.

U-235 is a possible source of the Reactor Anomaly?

Short baseline experiments at U-enriched reactors are needed

FNAL: Short Baseline Neutrino program

arXiv:1503.01520

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

Hunting for light sterile neutrinos

Accelerator MiniBooNe MINOS+ SBN at FNAL **Reactor** (running or under construction) **Daya Bay** DANSS **Neutrino-4 NEOS STEREO** Solid PROSPECT **NuLat Neutrino sources** BEST **Atmospheric neutrinos SuperKamiokande IceCube**

Conclusion

Current LBL experiments T2K + NOvA main goals: CP violation (3σ), Mass Hierarchy, θ_{23} T2K: first hint of CP violation in lepton sector

Next generation experiments:discovery/measurement of CPviolation, determination of Mass HierarchyJUNO(MH)under constructionDUNE(CP, MH)approvedHyperK and T2HK (CP)approved, seed funding

Light sterile neutrinos:

- no positive signal from running experiments
- crucial tests are coming

Thank you for attention!

Backup slides

Single-phase LAr TPC

1st 10 kt module of DUNE - single-phase TPC
6m x 2.3 m anode and cathode planes 3.6 m spacing
Photon detectors – light guides + SiPMs embedded in APAs

LAr detectors at CERN Neutrino Platform

NP02: WA105 (DP demonstrator + ProtoDUNE DP)

S.Murthy, talk at TPC-2016

Demonstrator: $3x1x1 \text{ m}^3 - 5 \text{ tons}$

Cosmic data taking gas begun

Y.Kudenko

ProtoDUNE DP: 6x6x6 m³ 300 tons active mass

Measurements with test beam in 2018

Neutrino oscillations 19 September 2018

Second tank in Korea

arXiv:1611.06118

