Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance

Alla Maevskaya on behalf of the ALICE collaboration

Outline

Introduction

- ALICE now (Run2)
- ALICE upgrade (Run3)

Fast Interaction Trigger (FIT) detector

- Required functionality
- Detector design
- Test results
 - Using PS beam
 - With a prototype installed in ALICE
- Simulated performance

Summary

The ALICE detector

- V0 consists of two arrays of 32 scintillating counters
- Installed on opposite sides of IP
- Scintillators coupled to PMTs by fibers $-3.7 < \eta < -1.7$, $2.8 < \eta < 5.1$ Time resolution: 450 ps and 350 ps for V0-A and V0-C, respectively

Current T0

- T0 consists of two arrays, placed on the opposite sides of the IP
- Cherenkov radiators, each coupled to PMTs (12 per side)
- -5 < η < -4.5, 2.9 < η < 3.3

Time resolution of ~ 40ps for protons and ~25ps for Pb-Pb collisions

V0 & T0 Provide triggers, luminosity monitoring, background reduction, collision time (for PID), centrality, and event-plane determination

ALICE physics plans

LHC plans after 2020

- Pb-Pb interaction rates 50kHz, pp 200kHz (up to 1-2 MHz).
- Focus on rare probes
 - heavy-flavour mesons and baryons,
 - quarkonium states,
 - low-mass dileptons,
 - jets,
 - their correlations with other probes.
- Detector upgrades
- New readout and trigger systems
- 2 operation modes for detectors: triggered and continuous

Key ALICE upgrades for Run 3

New Inner Tracking System (ITS)

- CMOS pixel, MAPS technology
- Improved resolution, less material, faster readout

New Muon Forward Tracker (MFT)

- CMOS Pixels, MAPS technology
- Vertex tracker at forward rapidity

New TPC Readout Chambers (ROCs)

- Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA), continuous readout

New Fast Interaction Trigger (FIT) Detector

- Centrality, event plane, luminosity, interaction time

Readout upgrade

- TOF, TRD, MUON, ZDC, Calorimeters

Integrated Online-Offline system (O²)

- Record MB Pb-Pb data at 50 kHz

Fast Interaction Trigger: requirements

6

Online

- Luminosity monitoring and feedback to LHC
- Trigger signals
 - Online Vertex determination
 - Minimum Bias and centrality selection
 - Rejection of beam-gas events
 - Veto for Ultra Peripheral Collisions
 - Minimal trigger latency <= 425 ns

Offline

- Collision time for Time-Of-Flight particle ID determination
- Multiplicity, centrality and event-plane measurements

Designing FIT

- How to make **FIT fast** ($\sigma T < 50$ ps)
 - Cherenkov radiators (quartz) + MCP (T0 - like)
- How to make **FIT big** (large acceptance)
- ✓ large area scintillators (V0 like)
- To fulfill all of ALICE requirements FIT must
- TO and VO
- For reliable operation both elements must be well **integrated**

FIT detector

The MCP-PMT XP85012 with

64 anode pads is transformed into the 4-channels detector by merging 16 pads (4×4) of each cell into a single channel Each V0+ sector is based on

- 4cm of EJ-204 plastic scintillator
- clear Asahi fibers with recessed ends
- 2" Hamamatsu R5924-70 fine-mesh PMTs.

Alla Maevskaya

FIT electronics

Custom readout and signal processing electronics. The main board is a fully integrated system :

- an amplifier,
- a Constant Fraction Discriminator (CFD),
- on-board Time and Amplitude to Digital converters (TDC/ADC) and FPGA processors,
- GBT based read-out.

Trigger decision to be based on digitized data (after TDCs & ADCs).

MCP-PMT test results: module properties

Time resolution of the whole system (Cherenkov module, 40 m cables, analog readout Electronic) 33 ps

1 MIP (Minimum Ionizing Particle) signal amplitude is dependent on the angle of incident particle – one of the reasons of concave shape of T0+C

Linear amplitude for full dynamic range even for T0+A modules around beam pipe with average particle load from 1.2MIP/q for pp 14TeV and 260MIP/q Pb-Pb 5.5TeV

Alla Maevskaya

Calculating the lifetime needed for T0+ modules

	рр	p-Pb	Pb-Pb
Standard scenario	5.6*10 ¹¹ (8.4 pb ⁻¹)	10 ¹¹ (50 nb ⁻¹)	1.1*10 ¹¹ (13 nb ⁻¹)
Alternative scenario	1.7*10 ¹³ (250 pb ⁻¹)	2*10 ¹² (1 pb ⁻¹)	1.1*10 ¹¹ (13 nb ⁻¹)
Average particle load / anode current of the most central T0+A quadrants	0.84 MIP/q 0.11 μA/q	3.3 MIP/q 0.36 μA/q	52 MIP/q 1.63 μA/q

The Total Integrated Anode Charge (IAC) will range from 0.03 C/cm² for the peripheral sensors up to 0.59 C/cm² for the central sensors

MCP-PMT aging tests

NRNU MEPhI April-October 2017 ~0.5 C/cm² IAC MCP-PMT with shielded half and the reference PMT ✓ 44% drop in pulse amplitude with respect to the reference PMT for 405 nm laser Decrease in illuminated half relative to shielded one ✓ 27% for 405 nm laser

✓ 15% for Cherenkov light (160...300nm)

Pulse amplitude as a function of integrated anode charge (IAC) in comparison with data from *A. Britting et al. 2011,* Lifetime-issue of MCP-PMT

Alla Maevskaya

FIT module installed in ALICE

Collision time resolution

2.5 years operations in ALICE near TOA position:

- Timing resolution better than 50 ps for single MIPs
- No signs of aging stable amplitude for all 4 channels

Trend of amplitudes 2016-2018years

FIT performance studies

AliRoot simulation of ALICE upgrade involving the following components:

- upgraded ITS
- MFT
- beam pipe
- FIT
- Solenoid field 0.5T and 0.2T

Generators tuned for Run3 simulations: ***** pp -> Pythia8 + QED, 14TeV

★ Pb-Pb -> HIJING + QED, 5.5TeV

ITS+MFT+FIT-C

V0A+ T0A+ support

ITS+MFT+FIT-C

Alla Maevskaya

T0+ MB trigger efficiency

pp 14TeV Pythia8 + QED

Pb-Pb, 5.5TeV, HIJING + QED Impact parameter 15-20fm (centrality 90-100%)

Online Minimum Bias (MB) trigger - interaction in given vertex range

Alla Maevskaya

Centrality and event-plane resolution

Centrality resolution T0+A, T0+C, V0+ and full FIT detector

The event-plane resolution of FIT, the comparison is made separately for each side for MFT (applied only in backward eta region), V0+ and T0+ and current V0

Baldin ISHEPP XXIV, September 17-22, 2018

16

Collision time

- Individual CFD time was smeared with Gauss distribution with a width of 50ps. Collision time is half of the sum of the average arrival times at T0+A and T0+C. Resolution was calculated as a difference between average arrival times on each side corrected with the primary vertex.

Summary

- During the upcoming LS2 ALICE will upgrade several of the key detectors including the **Fast Interaction Trigger** (FIT).
- FIT will consist of two arrays of **T0+** modules (Cherenkov radiators coupled to MCP-PMTs) and one **V0+** (large-size segmented scintillator ring).
- T0+ prototype has time resolution of 33ps during the tests at CERN PS
- MCP-PMT ageing test predicts a 15-27% drop in amplitude during RUN3 period.
- The modified Planacon XP85012/A1-Q MCP-PMTs shows signal linearity over full amplitude dynamic range.
- Simulation results satisfy all requirements of the FIT detector performance
 - MB trigger efficiency >90%;
 - Interaction time resolution better than 50ps as current T0;
 - Centrality and event-plane resolution similar to the current V0;
 - Vetoing of the ultra-peripheral collisions with efficiency of 99.9%
- The FIT upgrade is on track.

Thank you for your attention!

FIT collaboration involves ~50 people from 14 institutes in 6 counties

Alla Maevskaya

Acknowledgements. Participants from INR RAS and MEPhI were supported by the Program of Russian activities in the ALICE upgrade made possible by the Ministry of Education and Science of Russian Federation, contract No14.610.21.0003

