ANALYSIS OF THE $pp \rightarrow \{pp\}_s \pi^0$ REACTION AT THE ENERGY RANGE 0.8–2.8 GeV ANKE Collaboration, COSY-Jülich synchrotron(Germany) Presented by :

$\underline{\rm V.~Kurbatov}^{1,\dagger}$, A. Kunsafina 1,2,3 , Zh. Kurmanaliev 1,2,3 , D. Tsirkov 1

¹Laboratory of Nuclear Problems, JINR, Dubna, Russia

²Institute of Nuclear Physics, KZ-050032 Almaty, Kazakhstan

³L.N. Gumilyov Eurasian National University, KZ-010000 Astana, Kazakhstan

† kurbatov@jinr.ru

September 21, 2018

What to study $pp \to \{pp\}_s \pi^0$ process For?

 $\{pp\}_s$ is a pp system with the excitation energy $E_{pp} < 3$ MeV, i.e mainly S-state of two protons(the admixture of the states with higher momenta $\approx 6\%$). Then such pp system having I=1,L=0 may have spin S=0 only and angular momentum of initial beam-target pp system can be odd.

Why is it interesting to study processes with its participation? One example :

Assume that reaction near Δ_{1232} threshold goes via intermediate $\Delta_{1232}N$ state. Then angular momentum of such a system may be only only P,F,.. - only odd and its production is suppresessed due to centrifugal barrier. Then the other mechanisms may be more pronounced and suitable for its studies!

Also there is a well studied $pp \rightarrow d\pi^+$, where two nucleon system(deuteron) has quantum numbers S=1, I=0 and L=0,2 and a lot of analyses can be done comparing these two processes. Apparatus – ANKE setup,COSY-Jülich synchrotron(Germany). Energy Range – 0.8–2.8 GeV range.

12 expositions(energies) were analysed:

1 Exposition in march 2013 - energy 0.8GeV(march13)

9 Expositions in june 2010 - energies 1.0,1.4,1.6 and up to 2.8 with step 0.2,all GeV(j10)

2 Expositions in october 2007 - energies 1.7 and 2.4 (pi07) - statistically most meaningful; ≈ 30 times more than in j10 Angular Range Analyzed - $0^{\circ} < \theta_{pp} \lesssim 18^{\circ}, pp$ is diproton

Experimental Setup

ANKE, Experimental setup

Data Processing, Time criterium

Time Difference Criterium :

Data Processing, Missing Mass criterium - one

Missing Mass Criterium, Low Energy :

6/18

Data Processing, Missing Mass criterium - two

Missing Mass Criterium, Higher Energy :

Luminosity

Estimated by $pp \rightarrow pp$ reaction, delayed by the absence of information at 1.7,2.4 energies in our angular range. New ANKE data in 2016. It ranged from few tens nb^{-1} to few pb^{-1} Luminosity for pi07,1.7GeV as an example:

Everywhere where needed we used kinematical fitting technique. The results were obtained in the form $d\sigma/d\Omega_{pp}$, where Ω_{pp} - is the solid angle of pp system in the center of mass of the reaction. Only the proton pairs with the excitation energy $E_{pp} < 3MeV$ were selected. The accuracy was $\sigma_{(\delta(E_{pp})/E_{pp})} \approx 0.3$. Systematic errors were estimated to be $\approx 8\%$.

Fitting by : $d\sigma/d\Omega = d\sigma/d\Omega(0) * (1 + k * sin^2(\theta_{pp}^{cm})) - \text{for j10, march13 beam times.}$ $d\sigma/d\Omega = d\sigma/d\Omega(0) * (1 + k * sin^2(\theta_{pp}^{cm}) + k1 \cdot (sin^2(\theta_{pp}^{cm}))^2) - \text{for pi07}$ beam time.

Data

Integral Data

AtZero, Fit by Breight-Wigner

Solid curve - is a fit by formula $p0/((\sqrt{(s)} - p1)^2 + p2^2)$

Diagram of "Isobar" Model

Matrix element is $A \approx q_{\pi}/((s_{\Delta} - s_{\Delta}^{0}) - i \cdot (s_{\Delta}^{0})^{1/2} \cdot \Gamma_{t})$ where s_{Δ}, q_{π} - current values of Δ mass squared and pion momentum in its rest frame; s_{Δ}^{0} - central value of its mass squared, the width $\Gamma_{t} = \Gamma_{0} \left(\frac{q_{\pi}}{q_{0}}\right)^{2l+1} \cdot \frac{\rho(s_{\Delta})}{\rho(s_{\Delta}^{0})}$, where pion momentum is equal q_{0} for isobar mass s_{Δ}^{0} squared. 1 - is orbital momentum of the isobar and $\rho(x) = 1/((x + m_{\pi}^{2} - m_{p}^{2})/(2\sqrt{x})).$

Previous and current data Combined

Explanation of Previous Picture

Higher Panel - all the results obtained by our group, including current one. Solid curve is the result of fitting - for fit we used 5 points for the energies 0.5,0.55,0.6,0.7,0.8GeV and 5 points, obtained in the current analysis- energies 1.6,1.7,1.8,2.0,2.2GeV. Low one - parameter k. Fitting function was as a sum :

$$\begin{split} |A|^2 &= |A_{1232}(g_{1232}, M_{1232}, \Gamma_{1232})|^2 + |A_{1620}(g_{1620}, M_{1620}, \Gamma_{1620})|^2 \\ \text{Here } A_{1620}(g_{1620}, M_{1620}, \Gamma_{1620}) \text{ - the expression, used for the description} \\ \text{of the region } 1.6\text{-}2.2 \text{GeV} \text{ and } A_{1232}(g_{1232}, M_{1232}, \Gamma_{1232}) \text{ for low energy} \\ \text{region. Dashed curve is the contribution of } \Delta_{1232}, \text{ dot-dashed of } \Delta_{1620}. \\ \text{In a table } 1 \text{ we show the value of fitted parameters} \end{split}$$

Table: The values of parameters

parameter	Values(GeV)	Values(GeV) (separate fit)	
M_{1232}	1.225 ± 0.002		
Γ_{1232}	0.095 ± 0.006		
M_{1620}	1.606 ± 0.008	1.592 ± 0.008	
Γ_{1620}	0.175 ± 0.031	0.218 ± 0.026	16 / 18

Phenomenological(partial wave) analysis of differential cross sections and vector analyzing powers in the region of left peak(energy range of beam proton $0.5 \div 0.8 \text{ GeV}$) \rightarrow paper V.Komarov et al, Phys Rev C93,065206(2016):

All the data are explained as an interplay of two dibaryon resonances with close masses and widths ${}^{3}P_{0}$ and ${}^{3}P_{2}$; transitions ${}^{3}P_{0} \rightarrow^{1} S_{0}s$, ${}^{3}P_{2} \rightarrow^{1} S_{0}d$

Yesterday's Uzikov talk : calculations for zero-angle diff. cross section in his isobar model ($0.4 \div 1.8 GeV$) requires inclusion of ${}^{3}F_{2}d$ transition also.

- ► The differential cross section $d\sigma/d\Omega_{pp}$ for diproton production in the reaction $pp \rightarrow \{pp\}_s \pi^0$ at the energy range $0.8 \div 2.8 \text{GeV}$ is obtained. Angular range analyzed - $0^\circ < \theta_{pp}^{cm} \lesssim 18^\circ$
- ▶ The results show "unusual" behavior of cross section in the region 1.6–2.2GeV: unlike the energies outside this interval it grows to zero angle. Fit of the angular dependence of cross section at 1.7GeV requires quadratic term $(sin^2(\theta_{pp}^{cm}))^2$ what signals about more complex form compared with lower energies.
- ▶ All the results for zero-angle differential cross section, obtained by ANKE group in Dubna for period 2006-2018, qualitatively can be explained as noncoherent sum of two isobar production