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GENERAL

The Bessel-inspired behavior of parton densities at small Bjorken

x values, obtained in the case of the flat initial conditions for

DGLAP evolution equations, is used along with “frozen” and an-

alytic modifications of the strong coupling constant to study the

so-called EMC effect. Among other results, this approach allowed

predicting small x behavior of the gluon density in nuclei.



1. Introduction to DIS

A. Deep-inelastic lepton-hadron scattering

Deep-inelastic scattering cross-section:

σ ∼ LµνFµν



Hadron part Fµν (Q2 = −q2 > 0, x = Q2/[2(pq)]):

Fµν = (−gµν +
qµqν

q2
)F1(x,Q

2)

− (pµ −
(pq)

q2
qµ)(pν −

(pq)

q2
qν)

2x

q2
F2(x,Q

2) + ...,

where Fk(x,Q
2) (k = 1, 2, 3, L) - are DIS SF and q and p are

photon and hadron (parton) momentums.



B. Wilson operator expansion: Mellin moments Mk(n,Q
2) of

DIS SF Fk(x,Q
2) can be represented as sum

Mk(n,Q
2) =

∑

a=NS,SI,g
Ca
k(n,Q

2/µ2)
︸ ︷︷ ︸

Coeff. function

Aa(n, µ
2),

where Aa(n, µ
2) =< N |Oa

µ1,...,µn|N > are matrix elements of the

Wilson operators Oa
µ1,...,µn.

!!! There is a factorization in the Mellin-moment

space → there are Mellin convolutions in Bjorken-x

space !!!



C. The matrix elements Aa(n, µ
2) are Mellin moments of the

unpolarized PDF fa(n, µ
2).

DGLAP [= Renormgroup] equations:

d

d lnQ2fa(x,Q
2) =

∫ 1
x
dy

y
∑

b
Wb→a(x/y) fb(y,Q

2) . (1)

The anomalous dimensions (ADs) γab(n) of the twist-2 Wilson

operators Oa
µ1,...,µn (hereafter as = αs/(4π))

γab(n) =
∫ 1
0 dx xn−1Wb→a(x) =

∞∑

m=0
γ
(m)
ab (n)ams ,

All parton densities are multiplies by x, t.e.

structure function = combination of parton densities.
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Figure 1: x dependence of the ratio FC
2
(x,Q2)/FD

2
(x,Q2) in bins of x. The combined experimental data from SLAC E139

Collaboration are compared with the Fermi-Motion prediction (green line), rescaling model predictions (blue dashed line).

2 Introduction to EMC effect

The study of deep-inelastic scattering (DIS) of leptons off nuclei

reveals an appearance of a significant nuclear effect.

(for a review see, e.g., (M. Arneodo,1992); (P.R. Norton, 2013);
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Figure 2: Same as in Fig.1 butg for the ratio F Fe
2

(x,Q2)/FD
2
(x,Q2).

(S. Malace, D. Gaskell, D.W. Higinbotham, I. Cloet, 2014);

(K. Rith, 2015)).
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It was first observed by the European Muon Collaboration (EMC)

(J.J. Aubert et al.,1983)

in the valence quark dominance region 0.2 ≤ x ≤ 0.8; hence the

name.



This observation rules out the naive picture of a nucleus as being

a system of quasi-free nucleons.

There in general are two mainstream approaches to studying the

EMC effect.

• In the first one, which is at present more popular, nuclear par-

ton distribution functions (nPDFs) are extracted from the global

fits to nuclear data by using empirical parametrizations of their

normalizations

LO:(K.J. Eskola, H. Paukkunen, C.A.Salgado , 2009); (M. Hirai,

S. Kumano, T.H. Nagai, 2007); (K. Kovarik et al., nCTEQ15,

2015); NLO:(K.J. Eskola, P. Paukkunen, H. Paukkunen, C.A.Salgado,

2016); NNLO:(H. Khanpour and S. Atashbar Tehrani, 2016).

This is completely analogous to respective studies of usual PDFs

(L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne,



2015); (R.D. Ball et al., NNPDF Collab., 2015);

( P. Jimenez-Delgado, E. Reya, 2014); (A. Accardi, L.T. Brady,

W. Melnitchouk, J.F. Owens, N. Sato, 2016); (S. Alekhin, J. Blüm-

lein, S. Moch, R. Placakyte, 2017).

Both PDFs and nPDFs are obtained from the numerical soution

to Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

(V.N. Gribov, L.N. Lipatov, 1972); (L.N. Lipatov, 1975); (G. Altarelli,

G. Parisi, 1977); (Y.L. Dokshitzer, 1977).

• The second strategy is based upon some models of nuclear PDFs

(see different models in, a recent review (S.A. Kulagin,2016)).



Here we will follow the classical rescaling model

(R.L. Jaffe, F.E. Close, R.G. Roberts, G.G. Ross, 1983,1984, 1985);

(O. Nachtmann, H.J. Pirner, 1984),

which is based upon the suggestion

(R.L. Jaffe, F.E. Close, R.G. Roberts, G.G. Ross, 1983)

that the effective confinement size of gluons and quarks in the nu-

cleus is greater than in a free nucleon.

In the framework of perturbative QCD it was found

(R.L. Jaffe, F.E. Close, R.G. Roberts, G.G. Ross, 1983,1984, 1985)

that such a change in the confinement scale predicts that nPDFs

and PDFs can be related by simply rescaling their arguments.

Thus, in a sense, the rescaling model lies in-between two above ap-

proaches: in its framework there are certain relations between usual

and nuclear PDFs that result from shifting the values of kinematical

variable µ2; however, both densities obey DGLAP equations.



At that time, the model was established for the valence quark

dominance region: 0.2 ≤ x ≤ 0.8.

The aim of our study is to extend its applicability to the region

of small x values, where the rescaling values can be different for

gluons and quarks.

We use the generalized double-scaling approach (DAS)

(L. Mankiewicz, A. Saalfeld, T. Weigl, 1997);

(A.V. Kotikov, G. Parente, 1999),

which is based upon the analytical solution to DGLAP equations in

the small x region and generalizes earlier studies

(A. De Rújula, S.L. Glashow, H.D. Politzer, S.B. Treiman, F.

Wilczek, A. Zee, 1974); (R.D. Ball, S. Forte, 1994).



Our present analysis

(A.V. Kotikov, B.G. Shaikhatdenov, Pengming Zhang, 2017)

is carried out to the LO accuracy.

We would like to note that such a low accuracy is used only for

the present study, which can be considered as a first step in our

investigations. We are going to improve the accuracy at least to

the NLO level in the future works.



3 SF F2 at low x

A reasonable agreement between HERA data and predictions

made by perturbative QCD (pQCD) was observed for Q2 ≥ 2

GeV2

(A.M. Cooper-Sarkar, R.C.E. Devenish, A. De Roeck, 1998);

(A.V. Kotikov, 2007),

thus promising that pQCD is capable of describing the evolution of

parton densities down to very low Q2 values.



Some time ago ZEUS and H1 Collaborations have presented new

precise combined data

(F. D. Aaron et al., H1 and ZEUS Collab.,2010)

on the structure function (SF) F2.

An application of the generalized DAS approach at NLO

(A.V. Kotikov, G. Parente, 1999).

shows that theoretical predictions are well compatible with experi-

mental data at Q2 ≥ 3÷ 4 GeV2 (see recent results in

(A.V. Kotikov, and B.G. Shaikhatdenov, 2013, 2015, 2016))



We perform the LO analyses of the combined H1 and ZEUS data

(A.V. Kotikov, B.G. Shaikhatdenov, Pengming Zhang, 2017),

where the SF F2 has the following form

F2(x, µ
2) = e fq(x, µ

2), e =
f
∑

1

e2i
f

where e is an average of the squared quark charges.

The small-x asymptotic expressions for parton densities fa:

fa(x, µ
2) = f+a (x, µ

2) + f−a (x, µ2), (hereafter a = q, g)

f+g (x, µ
2) = (Ag +

4

9
Aq)Ĩ0(σ) e

−d+s +O(ρ),

f+q (x, µ
2) =

f

9
(Ag +

4

9
Aq)ρĨ1(σ) e

−d+s +O(ρ),

f−g (x, µ2) = −
4

9
Aqe

−d−s + O(x), f−q (x, µ2) = Aqe
−d−(1)s + O(x),



where Iν (ν = 0, 1) are the modified Bessel functions with

s = ln










as(µ
2
0)

as(µ2)










, σ = 2

√
√
√
√
√
√
√
√

∣
∣
∣
∣
∣
∣
d̂+

∣
∣
∣
∣
∣
∣
s ln








1

x






 , ρ =

σ

2 ln(1/x)
,

as(µ
2) ≡

αs(µ
2)

4π
=

1

β0 ln(µ2/Λ
2
LO)

(2)

and

d̂+ = −
12

β0
, d+ = 1 +

20f

27β0
, d− =

16f

27β0
(3)

denote singular d̂+ and regular d+ parts of the “anomalous dimen-

sions” d+(n) and d−(n) respectively, in the limit n → 1.



By using the above results we have analyzed H1 and ZEUS data

for F2. In order to keep the analysis as simple as possible, here

we take µ2 = Q2 and αs(M
2
Z) = 0.1168 in agreement with ZEUS

results. Moreover, we use the fixed flavor scheme with two different

values f = 3 and f = 4 of active quarks.



Table 1.

f = 3 as(Q
2) as(Q

2) aan(Q
2) aan(Q

2) afr(Q
2) afr(Q

2)

Q2 ≥ 1 GeV2 3.5 GeV2 1 GeV2 3.5 GeV2 1 GeV2 3.5 GeV2

Ag 0.46 ± 0.02 0.74 ± 0.04 1.16 ± 0.03 1.30 ± 0.04 0.96 ± 0.03 1.06 ± 0.04

Aq 1.58 ± 0.04 1.48 ± 0.06 1.16 ± 0.04 1.21 ± 0.07 1.23 ± 0.08 1.32 ± 0.07

Q2
0 0.40 ± 0.01 0.46 ± 0.01 0.20 ± 0.01 0.16 ± 0.01 0.49 ± 0.01 0.53 ± 0.01

χ2/Npoints 365.7/67 69.7/37 149.7/67 42.9/37 140.4/67 47.6/37

f = 4 as(Q
2) as(Q

2) aan(Q
2) aan(Q

2) afr(Q
2) afr(Q

2)

Q2 ≥ 1 GeV2 3.5 GeV2 1 GeV2 3.5 GeV2 1 GeV2 3.5 GeV2

Ag 0.47 ± 0.02 0.54 ± 0.03 0.65 ± 0.02 0.76 ± 0.03 0.96 ± 0.03 0.77 ± 0.03

Aq 1.58 ± 0.04 1.09 ± 0.06 0.95 ± 0.03 0.96 ± 0.04 1.23 ± 0.05 0.95 ± 0.06

Q2
0 0.40 ± 0.01 0.37 ± 0.01 0.16 ± 0.01 0.19 ± 0.01 0.49 ± 0.01 0.43 ± 0.01

χ2/Npoints 366.0/67 57.0/37 166.3/67 43.6/37 140.0/67 40.6/37

As can be seen from Table 1, the twist-two approximation looks

reasonable for Q2 ≥ 3.5 GeV2. It is almost completely compatible

with NLO analyses

(A.V. Kotikov, and B.G. Shaikhatdenov, 2013, 2015, 2016).



Moreover, these results are rather close to original analyses

(A.M. Cooper-Sarkar et al., 2016); (I. Abt et al., 2016),

performed by the HERAPDF group.

At lower Q2 there is certain disagreement, which is we believe

to be explained by the higher-twist (HT) corrections playing their

important role.

These HT corrections have rather cumbersome form at low x

(A.Yu. Illarionov, A.V. Kotikov, G. Parente, 2007).



It is very promising to use infrared modifications of the strong

coupling constant in our analysis.

(Cvetic, A.Yu. Illarionov, B.A. Kniehl, A.V. Kotikov, 2009),

Such types of coupling constants modify the low µ2 behavior of

parton densities and structure functions. What is important, they

do not produce additional free parameters.

We use “frozen” afr(µ
2)

(B. Badelek, J. Kwiecinski, A. Stasto, 1997), (Y.A. Simonov, 2011)

and analytic aan(µ
2) (D.V. Shirkov, I.L. Solovtsov, 1997)

versions

afr(µ
2) = as(µ

2+M2
g ), aan(µ

2) = as(µ
2)−

1

β0

Λ2LO
µ2 − Λ2LO

, (4)

where Mg is a gluon mass with Mg=1 GeV2.



It is seen that the results of the fits carried out when afr(µ
2) and

aan(µ
2) are used, are very similar to the corresponding NLO ones.

Moreover, note that the fits in the cases with “frozen” and analytic

strong coupling constants look very much alike and describe fairly

well the data in the low Q2 region, as opposed to the fits with a

standard coupling constant, which largely fails here. The results

are presented in Table 1. With the number of active quarks f = 4,

they are shown also in Fig. 1.
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Figure 4: x dependence of F2(x,Q
2) in bins of Q2. The combined experimental data from H1 and ZEUS Collaborations are

compared with the LO fits for Q2 ≥ 1 GeV2 implemented with the standard (solid lines), frozen (dash-dotted lines), and

analytic (dashed lines) modifications of the strong coupling constant.

Just like the previous NLO analyses we observe strong improve-

ment in the agreement between theoretical predictions and experi-

mental data once “frozen” and analytic modifiations to the coupling

constant are applied: χ2 value drops by more than two times.



4 Rescaling model

In the rescaling model SF F2 and, therefore, valence part of quark

densities, gets modified in the case of a nucleus A at intermediate

and large x values (0.2 ≤ x ≤ 0.9) as follows

FA
2 (x, µ2) = F2(x, µ

2
A,v), fANS(x, µ

2) = fNS(x, µ
2
A,v),

where a new scale µ2A,v is related with µ2 as

µ2A,v = ξAv (µ
2)µ2, ξAv (µ

2) =










λ2A
λ2N










as(µ̃
2)/as(µ

2)

,

where some additional scale µ̃2 = 0.66 GeV2, which in-turn was

the initial condition for an µ2-evolution.

The values of λA/λN and ξAv (µ
2) at µ2 = 20 GeV2 were evalu-

ated for different nuclei and presented in Tables I and II in

(F.E. Close, R.L. Jaffe, R.G. Roberts, G.G. Ross, 1985).



Since the factor ξAv (µ
2) is µ2 dependent, it is convenient to trans-

form it to some µ2 independent one.

We consider the variable ln(µ2A,v/Λ
2)

ln










µ2A,v
Λ2










= ln










µ2

Λ2










· (1 + δAv )

where the nuclear correction factor δAv becomes µ2 independent:

δAv =
1

ln
(

µ̃2/Λ2
) ln










λ2A
λ2N










,

where we see that two parameters: the scale µ̃ and the ratio

λA/λN , form the the Q2-independent combination.



The results for δAv are presented in Table 2.
Table 2.

A 2D 4He 7Li 12C 40Ca

N 11 16 16 11

δAv 0.01 0.06 0.05 0.08 0.11

δAD
v 0 0.05 0.04 0.07 0.10

-δAD
+,an 0 0.06 ± 0.01 0.06 ± 0.01 0.11 ± 0.01 0.19 ± 0.01

-δAD
−,an 0 0.24 ± 0.08 0.22 ± 0.07 0.41 ± 0.04 0.51 ± 0.04

χ2
an 0 4.68 17 9.68 12

-δAD
+,fr 0 0.06 ± 0.01 0.06 ± 0.01 0.12 ± 0.01 0.21 ± 0.02

-δAD
−,fr 0 0.32 ± 0.08 0.28 ± 0.07 0.54 ± 0.04 0.71 ± 0.04

χ2
fr 0 5 35 26 37

Since our parton densities contain the variable s. it is convenient

to consider its A modification:

sAv ≡ ln











ln


µ2A,v/Λ
2




ln
(

µ20/Λ
2
)











= s + ln(1 + δAv ) ≈ s + δAv ,

i.e. the nuclear modification of the basic variable s depends on the

µ2 independent parameter δAv , which possesses very small values.



5 Rescaling model al low x

Standard evidence coming from earlier studies contains conclu-

sion about inapplicability of the rescaling model at small x values

(see, for example, (A.V. Efremov, 1986))

It looks like it can be related with some simplifications of low x

analyses, where the rise in EMC ratio was wrongly predicted at

small x values.

(see, for example, (A.V. Kotikov, 1988))

Using an accurate study of DGLAP equations at low x within the

framework of the generalized DAS approach, it is possible to achieve

nice agreement with the experimental data for the DIS structure

functon F2 (see above). Therefore, we believe that all these indi-

cate toward success in study of the DIS structure functon

FA
2 and, thus, the EMC ratio by using the same approach.



Thus, we are trying to apply the DAS approach to low x region

of EMC effect using a simple fact that the rise of parton densities

increases with increasing Q2 values. This way, with scales of PDF

evolutions less than Q2 (i.e. µ2A ≤ Q2 for gluons and sea quarks) in

nuclear cases, we can directly reproduce the shadowing effect which

is observed in the global fits. Since there are two components for

each parton density, we have two free parameters µ± to be fit in

the analyses of experimental data for EMC effect at low x values.



Application of the rescaling model at low x at LO:

FA
2 (x, µ2) = e fAq (x, µ2), FN

2 (x, µ2) = e fq(x, µ
2),

fAa (x, µ2) = fA,+a (x, µ2) + fA,−a (x, µ2), (a = q, g),

fA,±a (x, µ2) = f±a (x, µ2A,±) ,

with a similar definition of µ2A,± as above for µ2A,v (up to replace-

ment v → ±).

Then, the corresponding values of sA± are found to be

sA± ≡ ln











ln


µ2A,±/Λ
2




ln
(

µ20/Λ
2
)











= s + ln(1 + δA±) ,

because of the saturation at low x values for all considered Q2

values, which in our case should be related with decreasing the

arguments of “±” component. Therefore, the values of δA± should

be negative.



6 Analysis of the low x data for nucleus

Note that it is usually convenient to study the following ratio

RAD
F2 (x, µ

2) =
FA
2 (x, µ2)

FD
2 (x, µ2)

.

Using the fact that the nuclear effect in a deutron is very small

(see Table 1 for the values of δAv ) , we can suggest that

FD
2 (x, µ2) = e fq(x, µ

2), FA
2 (x, µ2) = e fAq (x, µ

2),

fAa (x, µ
2) = fA,+a (x, µ2) + fA,−a (x, µ2), (a = q, g),

fA,±a (x, µ2) = f±a (x, µ2AD,±) ,

i.e.



fA,+g (x, µ2) = (Ag +
4

9
Aq)I0(σ

AD
+ ) e−d+s

AD
+ +O(ρAD+ ),

fA,+q (x, µ2) =
f

9
(Ag +

4

9
Aq)ρ

AD
+ I1(σ

AD
+ ) e−d+s

AD
+ +O(ρAD+ ),

fA,−g (x, µ2) = −
4

9
Aqe

−d−s
AD
− + O(x),

fA,−q (x, µ2) = Aqe
−d−(1)s

AD
− + O(x),

where

σAD+ = σ(s → sAD+ ), ρAD+ = ρ(s → sAD+ ),

sAD± ≡ ln











ln


µ2AD,±/Λ
2




ln
(

µ20/Λ
2
)











= s + ln(1 + δAD± ) .



We obtain the values of δAD± by fitting NMC experimenal data

(M. Arneodo et al., New Muon Collab.,1995)

for the EMC ratio at low x in the case of different nuclei.

Since the experimental data for lithium and carbon are most pre-

cise and contain the maximal number of points (16 points for each

nucleus), we preform combined fits of these data. Obtained results

(with χ2an=27 and χ2fr=43 for 32 points) are presented in Table 3

and shown in Fig. 2.

Table 3.

-δAD+,an -δAD
−,an -δAD

+,fr -δAD−,fr

7Li 0.061 ± 0.006 0.216 ± 0.065 0.073 ± 0.012 0.348 ± 0.067
12C 0.105 ± 0.007 0.411 ± 0.042 0.139 ± 0.013 0.590 ± 0.041



EMC effect in a combined Li+C fit
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Figure 5: x dependence of RAD
a (x, µ2) in bins of x. The combined experimental data from NMC are compared with the LO

fits implemented with the frozen (solid lines) and analytic (dashed lines) modifications of the strong coupling constant.

As can be seen in Fig. 2 there is large difference between the fits

with “frozen” and analytic versions of the strong couling constant.

This is in contrast with the analysis done above for SF F2.

This difference comes about because we include in the analysis

the region of very low Q2 values, where “frozen” and analytic strong

couling constants are rather different ( D.V. Shirkov, 2012)).



6 A dependence at low x

Taking NMC experimental data

(M. Arneodo et al.„ 1995), (P. Amaudruz et al., 1995)

along with E665 and HERMES Collaborations

(M.R. Adams et al., E665 Collab., 1995);

(K. Ackerstaff et al., HERMES Collab., 2000)

for the EMC ratio at low x in the case of different nuclei, we can

find the A dependence of δAD± , in the form

−δAD± = c
(1)
± + c

(2)
± A1/3.

The values of c
(1)
± and c

(2)
± are found in the combined fit of the

data (76 points) with the analytic coupling constant (with χ2 = 89)

c
(1)
+,an = −0.055± 0.015, c

(2)
+,an = 0.068± 0.006,

c
(1)
−,an = 0.071± 0.101, c

(2)
−,an = 0.120± 0.039 .



Now, using the above A dependence, RAD
F2 (x, µ

2) values for any

nucleus A can be predicted.

What is more, we can consider also the ratios RAD
a (x, µ2) of parton

densities in a nucleus and deutron themselves,

RAD
a (x, µ2) =

fAa (x, µ
2)

fa(x, µ2)
, (a = q, g) ,

Indeed, at LO RAD
q (x, µ2) = RAD

F2 (x, µ
2); therefore, results for

RAD
q (x, µ2) are already known. Since all the parameters of PDFs

found within the framework of the generalized DAS approach are

now fixed we can predict the ratio RAD
g (x, µ2) of the gluon den-

sities in a nucleus and nucleon, which is currently under intensive

studies (see a recent review

(N. Armesto, 2006)

along with references and discussion therein).



Comparison for analytic αs
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Figure 6: x dependence of RAD
F2

(x, µ2) and RAD
g (x, µ2) at µ2=10 GeV2 in x bins for lead data. Pink and blue bands show 90%

uncertainties taken from (H. Paukkunen, 2017) respectively. The red line shows their result and the black one is obtained in

the present paper.

The results for RAD
F2 (x, µ

2) and RAD
g (x, µ2), depicted in Fig. 3,

show some difference between these ratios. The difference is similar

to that obtained in the recent EPPS16 analysis

(K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, 2017).



However, what for RAD
F2 (x, µ

2) and RAD
g (x, µ2) themselves, we

obtain a bit stronger effect at lowest x values, which does in fact

not contradict the experimental data collected by the LHCb exper-

iment (see recent review in (M. Winn, 2017).

Such a strong effect is also well compatible with the leading order

EPPS09 analysis (which can also be found in above paper).



As the end, we would to put some note about the uncertantity

bands. The results for RAD
g (x, µ2) together with the blue band

is completely determined by the rescaling model and our analytic

form of parton densities at low x values. So, the blue band for

RAD
g (x, µ2) should strongly increae in the case of a freedom in

an usage of various models. Moreover, a comparizon between two

above bands is ruther misleading. The pink band is much broader

since the EPPS16 global analysis included a fit to all available data

but not just some small x ones as it was done here.



7 Conclusion

We applied the DAS approach to examine an EMC F2 structure

function ratio between various nuclei and a deutron.

• Within a framework of the rescaling model good agreement be-

tween theoretical predictions and experimental data is achieved.

• The theoretical formullas contain certain parameters, whose val-

ues were fitted in the analyses of experimental data. Once the

fits are carried out we have predictions for the corresponding

ratios of parton densities without free parameters. These results

were used to predict small x behavior of the gluon density in

nuclei, which is at present poorly known.

• The obtained ratios RAD
a (x, µ2) (a = q, g) are compatible with

those given by various groups working in the area. The rescaling

model provided us with very simple forms for these ratios.



FUTURE

• We plan to extend our analysis to the NLO level of approxima-

tion, the accuracy that is currently a standard in nPDF studies.

• Using the parametrizations of parton valence density in ( A.Y. Il-

larionov, A.V. Kotikov, S.S. Parzycki, D.V. Peshekhonov, 2011),

we plan to apply the rescaling model to study the structure func-

tion xF3.

• We are going to consider a rather broad range of the Bjorken

variable x by using parametrizations of parton densities, which

will be constructed by analogy with the above one.

The usage of such type of parametrizations give a possibility

to study the range of intermediate x values, which is presently

under active considerations.




