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The task of the experiments of the CREMA Collaboration (Charge
Radius Experiment with Muonic Atoms) in 2010-2018 is the
measurement the fine and hyperfine structure of the spectrum in
light muonic atoms (muonic hydrogen, muonic deuterium, muonic
helium ions ...); determination of the charge radii of the proton,
deuteron, helion, alpha particle with an accuracy of 0.0005 fm.
One of the obtained results is connected with the hyperfine
splitting (HFS) of 2S-state in muonic hydrogen:

∆Ehfs
exp(2S) = 22.8089(51) meV . (1)

A. Antognini et al., Science 339, 417 (2013).
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One of the future tasks of CREMA is to extend the laser
spectroscopy experiments of muonic systems to the elements of
lithium and beryllium... and to improve the values of charge radii
and the Zemach radii of light nuclei

S. Schmidt et al., The next generation of laser spectroscopy
experiments using light muonic atoms arXiv:1808.07240.

R. Swainson and G. W. F. Drake, Phys. Rev. A 34, 620 (1986).
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A part of the Breit Hamiltonian, responsible for hyperfine splitting,
has a known form in the coordinate representation:

∆V hfs
B (r) =

4πα(1 + aµ)µN

3m1mps2
(s1s2)δ(r), (2)

where the masses of the muon and nuclear will be denoted further
m1, m2, mp is the proton mass, µN is the nuclear magnetic
moment in nuclear magnetons, aµ is the muon anomalous magnetic
moment (AMM), s1 and s2 are the spins of a muon and nucleus.
The potential ∆V hfs

B gives the main part of hyperfine splitting of
order α4 which is called the Fermi energy:

EF (nS) =
2Z 3α4µ3µN

3m1mpn3s2
(2s2 + 1), (3)

where n is the principal quantum number, µ = m1m2/(m1 +m2).
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The Fermi energy is obtained after averaging (2) over the Coulomb
wave functions. In the case of 1S- and 2S-states they have the
form:

ψ100(r) =
W 3/2

√
π

e
−Wr , W = µZα, (4)

ψ200(r) =
W 3/2

2
√
2π

e
−Wr/2

(

1− Wr

2

)

. (5)

The muon AMM correction to hyperfine splitting is presented
separately taking experimental value of muon AMM:

∆Ehfs
aµ (nS) = aµEF (nS). (6)

Numerical value of relativistic correction of order α6 to HFS can
be obtained by means of known analytical expression:

∆Ehfs
rel (nS) =

{

3
2(Zα)

2EF (1S)
17
8 (Zα)

2EF (2S)
. (7)

Next, we investigate a number of basic corrections to the hyperfine
structure of S-states in order to obtain acceptable total result.
Numerical values of different corrections are presented for
definiteness with the accuracy 10−2 meV.
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Nuclear structure corrections play important role in the calculation
of hyperfine structure. They are determined by the electromagnetic
form factors of the nuclei. Among the nuclei that we are
considering, several nuclei have a spin s2 = 3/2. The amplitude of
the one-photon interaction:

iM1γ = −Ze2

k2
[ū(q1)γµu(p1)][v̄α(p2)Oαµβvβ(q2)] = (8)

−Ze2

k2
[ū(q1)γµu(p1)]v̄α(p2)

{

gαβ
(p2 + q2)µ

2m2
F1(k

2)− gαβσµν
kν

2m2
F2(k

2)+

kαkβ

4m2
2

(p2 + q2)µ
2m2

F3(k
2)− kαkβ

4m2
2

σµν
kν

2m2
F4(k

2)
}

vβ(q2).

Oαµβ is the vertex function of the spin 3/2 nucleus. Nuclei with a
spin 3/2 are described by the spin-vector vα(p). Four form factors
Fi (k

2) are related to the charge GE0, electroquadrupole GE2,
magnetic dipole GM1 and magnetic octupole GM3 form factors:

GE0 =

(

1 +
2

3
τ

)

[F1 + τ (F1 − F2)]− τ

3
(1 + τ )[F3 + τ (F3 − F4)], (9)

GE2 = F1 + τ (F1 − F2)− 1 + τ

2
[F3 + τ (F3 − F4)],

GM1 = (1 +
4

3
τ )F2 − 2

3
τ (1 + τ )F4, GM3 = F2 − 1

2
(1 + τ )F4, τ = − k2

4m2
2

.
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It is useful to consider how the magnitude of the hyperfine splitting in the
leading order (the Fermi energy) can be obtained from the amplitude M1γ .
When two moments are added, two states appear with the total angular
momentum F = 2 and F = 1. To distinguish the contribution of the amplitude
M1γ to the interaction operator of particles with F = 2 and F = 1, we use the
method of projection operators, which are constructed from the wave functions
of free particles in the rest frame. Thus, the projection operator on a state with
F = 2 is equal to

Π̂α = [u(0)v̄α(0)]F=2 =
1 + γ0

2
√
2
γβεαβ, (10)

where the tensor εαβ describes a muonic atom with F = 2. As a
result, the projection of M1γ to the state with F = 2 takes the
form:

iM1γ(F = 2) = − Ze2

16k2m2
1m

2
2

Tr

{

(q̂1 +m1)γµ(p̂1 +m1)
1 + v̂

2
√
2
γρεαρ(p̂2 −m2)×

(11)
[

gαβ
(p2 + q2)µ

2m2
F1(k

2)− gαβσµν
kν

2m2
F2(k

2) +
kαkβ

4m2
2

(p2 + q2)µ
2m2

F3(k
2)−

kαkβ

4m2
2

σµν
kν

2m2
F4(k

2)
]

(q̂2 −m2)γλ
1 + v̂

2
√
2
ε∗βλ

}

,

where auxiliary four-vector v = (1, 0, 0, 0).
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For further construction of the particle interaction potential from the
amplitude, we use the averaging over the projections of the total angular
momentum F which is connected with the calculation of the following sum:
∑

pol

ε∗βλεαρ = Π̂βλαρ =
1

2
XβαXλρ+

1

2
XβρXλα−

1

3
XβλXαρ, Xβα = (gαβ−vβvα).

(12)
To introduce the projection operators for another state of hyperfine structure
with F = 1 we use the following expansion:

Ψs2=3/2,F=1,Fz =

√

2

3
ΨS=0,F=1,Fz +

1√
3
ΨS=1,F=1,Fz , (13)

the Rarita-Schwinger spinor vα(p) for the state with s2 = 3/2 is presented as a
result of adding spin 1/2 and angular momentum 1. With this method of
adding moments, the total spin S can take two values S = 1 and S = 0. When
calculating the matrix elements for the states Ψ01Fz and Ψ11Fz , we successively
perform the projection on the state with spin S = 0, S = 1, and then on the
state with the total angular momentum F = 1. The corresponding projection
operators have the form:

Π̂α(S = 0,F = 1) =
1 + v̂

2
√
2
γ5εα, (14)

Π̂α(S = 1, F = 1) =
1 + v̂

4
γσεασρωv

ρεω, (15)

εω is the polarization vector of the state with F=1.
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Then the matrix elements of M1γ according to the states of Ψ01Fz and Ψ11Fz

are reduced to the form:

< Ψ01Fz |iM1γ(F = 1)|Ψ01Fz >=
πZα

96k2m2
1m

2
2

Tr
{

(q̂1 +m1)γµ(p̂1 +m1)(1 + v̂)γ5

(16)

(p̂2−m2)
[

gαβ
(p2 + q2)µ

2m2
F1(k

2)−gαβσµν
kν

2m2
F2(k

2)+
kαkβ

4m2
2

(p2 + q2)µ
2m2

F3(k
2)−

kαkβ

4m2
2

σµν
kν

2m2
F4(k

2)
]

(q̂2 −m2)γ5(1 + v̂)
}

(−gαβ + vαvβ),

< Ψ11Fz |iM1γ(F = 1)|Ψ11Fz >=
πZα

192k2m2
1m

2
2

Tr
{

(q̂1+m1)γµ(p̂1+m1)(1+ v̂)γσ

(17)

(p̂2−m2)
[

gαβ
(p2 + q2)µ

2m2
F1(k

2)−gαβσµν
kν

2m2
F2(k

2)+
kαkβ

4m2
2

(p2 + q2)µ
2m2

F3(k
2)−

kαkβ

4m2
2

σµν
kν

2m2
F4(k

2)
]

(q̂2 −m2)γǫ(1 + v̂)
}

εασρωεβǫτλ(−gλω + vλvω).
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In addition, the off-diagonal matrix element < Ψ01Fz |iM1γ(F = 1)|Ψ11Fz > is
also nonzero. The sum of all the matrix elements gives in the nonrelativistic
approximation the following value of the hyperfine splitting (the Fermi energy):

∆E
hfs
1γ = EF (nS) =

16

9

πZα

m1m2
F2(0)

W 3

πn3
=

16α(Zα)3µ3

9m1mpn3
µN . (18)

The expressions for the amplitude M1γ are presented in a form that is

convenient for the subsequent calculation of the contribution in the Form

package. We present in detail the results of calculating the amplitude M1γ ,

since this calculation technique is used later in the calculation of two-photon

exchange amplitude shown in Fig. 1. In the case of nuclei with spin s2 = 1/2

and s2 = 1 the similar technique of projection operators was used in our

previous works.

a b

Figure: Nuclear structure effects of order α5. The bold point denotes the
nucleus vertex function.
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Basic contribution of the nuclear structure effects of order α5 to the hyperfine
splitting is determined by two-photon exchange diagrams. It is expressed in
terms of electric GE (k

2) and magnetic GM(k2) nuclear form factors in the form
(the Zemach correction):

∆E
hfs
str = EF

2µZα

π

∫

dk

k4

[

GE (k
2)GM(k2)

GM(0)
− 1

]

. (19)

We have analysed numerical values of correction (19) for different
parameterizations of nuclear form factors: Gaussian GG

E (k2), dipole GD
E (k2) and

uniformly charged sphere GU
E (k2):

G
G
E (k2) = e

− 1
6
r2N k2 , GD

E (k2) =
1

(1 + k2

Λ2
)2
, GU

E (k2) =
3

(kR)3
[sin kR − kR cos kR] ,

(20)

where R =
√
5rN/

√
3 is the nucleus radius, Λ2 = 12/r2N .
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A comparison of functions G 2
E (k

2) for different parameterizations is

presented in Fig. 2 for the nucleus 6
3Li . In the range 0.1 ≤ k ≤ 0.4 GeV

there is a difference between functions (19) which leads to different

numerical values of the Zemach correction.

Figure: Gaussian (dashed), dipole (dotted) and uniformly charged sphere
(solid) parameterizations of nuclear form factor G 2

E (k
2).

The momentum integration in (19) can be done analytically, so that the
Zemach correction with the Gaussian and uniformly charged sphere
parameterizations has the form:

∆E hfs
str ,G = −EF

72√
3π

µZαrN , ∆E hfs
str ,U = −EF

72
√
5

35
√
3
µZαrN . (21)
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Acting as in the case of the one-photon interaction, we can present
the contribution of two-photon interactions to HFS at F = 2:

∆E
hfs
2γ (F = 2) = −

(Zα)2

640π2m2
1m

2
2

|ψ(0)|
2
∫

id4k(k2 − 2k0m2)

k4(k4 − 4k20m
2
1)(k

4 − 4k20m
2
2)

Tr
{

(q̂1 + m1)× (22)

[γµ(p̂1 − k̂ + m1)γν (k
2
+ 2k0m1) + γν (p̂1 + k̂ + m1)γµ(k

2
− 2k0m1)](p̂1 + m1)(1 + v̂)γρ(p̂2 − m2)×

Oανσ(k)(−p̂2 − k̂ +m2)[gστ −
1

3
γσγτ −

2

3m2
2

(p2 + k)σ(p2 + k)τ +
1

3m2

(γσ(p2 + k)τ − γτ (p2 + k)σ)]×

Oτµβ (−k)(q̂2 − m2)γλ(1 + v̂)
}

Π̂βαλρ,

We also give for completeness analogous expressions for two states in (13) with F = 1, S = 0 and F = 1, S = 1:

∆E
hfs
2γ (F = 1, S = 0) = −

(Zα)2

384π2m2
1m

2
2

|ψ(0)|
2
∫

id4k(k2 − 2k0m2)

k4(k4 − 4k20m
2
1)(k

4 − 4k20m
2
2)

Tr
{

(q̂1 + m1)× (23)

[γµ(p̂1 − k̂ + m1)γν (k
2
+ 2k0m1) + γν (p̂1 + k̂ + m1)γµ(k

2
− 2k0m1)](p̂1 + m1)(1 + v̂)γ5(p̂2 − m2)×

Oανσ(k)(−p̂2 − k̂ +m2)[gστ −
1

3
γσγτ −

2

3m2
2

(p2 + k)σ(p2 + k)τ +
1

3m2

(γσ(p2 + k)τ − γτ (p2 + k)σ)]×

Oτµβ (−k)(q̂2 − m2)γ5(1 + v̂)
}

(−gαβ + vαvβ ),

∆E
hfs
2γ (F = 1, S = 1) = −

(Zα)2

768π2m2
1m

2
2

|ψ(0)|
2
∫

id4k(k2 − 2k0m2)

k4(k4 − 4k20m
2
1)(k

4 − 4k20m
2
2)

Tr
{

(q̂1 + m1)× (24)

[γµ(p̂1 − k̂ + m1)γν (k
2
+ 2k0m1) + γν (p̂1 + k̂ + m1)γµ(k

2
− 2k0m1)](p̂1 + m1)(1 + v̂)γσ1

εασ1ρ1ω1
vρ1×

(p̂2 − m2)Oανσ(k)(−p̂2 − k̂ + m2)[gστ −
1

3
γσγτ −

2

3m2
2

(p2 + k)σ(p2 + k)τ +
1

3m2

(γσ(p2 + k)τ−

γτ (p2 + k)σ)]Oτµβ (−k)(q̂2 − m2)γǫ1 (1 + v̂)εβǫ1τ1λ1
vτ1

}

(−gλ1ω1
+ vλ1

vω1
).
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As a result the value of the hyperfine splitting is determined in Euclidean space
by the following formula:

∆E
hfs

(nS) = |ψnS (0)|
2
∫

d
4
kV2γ (k) =

64

9

(Zα)2

π2
|ψnS (0)|

2
∫

d4k

k4(k4 + 4m2
1k

2
0 )(k

4 + 4m2
2k

2
0 )

× (25)

[

F1F2

(

k
6
− k

4
k
2
0 +

4

15

k4k40

m2
2

−
7

10

k6k20

m2
2

+
13

30

k8

m2
2

)

+ F2F4

(

−
1

30

k2k60

m2
2

+
1

15

k4k40

m2
2

−
1

30

k6k20

m2
2

)

+

F2F3

(

−
1

15

k2k60

m2
2

+
11

60

k4k40

m2
2

−
7

60

k8

m2
2

)

+ F1F4

(

−
1

5

k2k60

m2
2

+
3

10

k4k40

m2
2

−
1

10

k8

m2
2

)

+

F
2
2

( 1

15

k2k60

m2
2

−
1

6
k
2
k
4
0 −

2

15

k4k40

m2
2

+
1

6
k
4
k
2
0 +

23

120

k6k20

m2
2

−
1

4

k8

m2
2

)]

.

When investigating this expression, it is useful to distinguish the Zemach
correction, which is determined by the integral

J =

∫

∞

0

∫

π

0

k sin2 φdkdφF1(k
2)F2(k

2)

(k2 + 4m2
1 cos2 φ)(k2 + 4m2

2 cos2 φ)
=

π

2(m1 + m2)

∫

∞

0

dk

k2
F1(k

2
)F2(k

2
)+ (26)

π

4(m2
1 − m2

2)

∫

∞

0

dk

k2
[
√

k2 + 4m2
1 − 2m1 −

√

k2 + 4m2
2 + 2m2]F1(k

2
)F2(k

2
).

The divergence in the first term on the right-hand side of (26) is compensated
by the subtraction term

∆E
hfs
iter =

64

9

(Zα)2

π2
|ψ(0)|

2
∫

∞

0

2π2F2(0)

(m1 + m2)k2
dk. (27)

Thus, we have in (25) the main contribution (the Zemach correction) and the

recoil correction m1/m2.
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The form factors Fi(k
2) are expressed in terms of GE0, GE2, GM1, GM3 for which

the Gaussian parametrization is used in numerical calculations of integrals with
respect to k. The values of the form factors at zero have the form:

GE0(0) = 1, GM1(0) =
m2µN

mpZ
, GE2(0) = m

2
2Q, GM3(0) =

m2

mpZ
m

2
2Ω. (28)

The nucleus parameters of lithium, beryllium and boron.
Nucleus Spin Mass , Magnetic dipole Charge radius, Electroquadrupole Magnetic

GeV moment, nm fm moment, fm2 octupole,
moment,

nm·fm2

6
3Li 1 5.60152 0.8220473(6) 2.5890 ± 0.0390 -0.083(8) 0
7
3Li 3/2 6.53383 3.256427(2) 2.4440 ± 0.0420 -4.06(8) 7.5
9
4Be 3/2 8.39479 -1.177432(3) 2.5190 ± 0.0120 5.29(4) 4.1
10
5 B 3 9.32699 0.8220473(6) 2.4277 ± 0.0499 8.47(6) 0
11
5 B 3/2 10.25510 0.8220473(6) 2.4060 ± 0.0294 4.07(3) 7.8

Different parameters of light nucleus (Li, Be, B) were investigated in electron
scattering experiments (H. Uberall, G. H. Fuller). Some of them are unknown
with good accuracy, but, nevertheless, one can obtain approximate estimates of
the corresponding contributions.

H. Uberall, Electron scattering from complex nuclei, Academic press, NY,
London, 1971.

G. H. Fuller, Jour. Phys. and Chem. Ref. Data 5, 835 (1976).
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Another correction for the structure of the nucleus of order α6, which must be
discussed, is obtained as a result of the expansion of nucleus magnetic form
factor. The contribution to the interaction potential and HFS in this case has
the form:

∆V
hfs
1γ,str (r) =

4παµN

9m1mp

r
2
M(s1s2)∇2δ(r), (29)

∆E
hfs
1γ,str =

2

3
µ2

Z
2α2

r
2
M

3n2 + 1

n2
EF (nS). (30)

-

a b 

=

G̃

d

Figure: Nuclear structure effects in one-photon interaction (c) and in
second order perturbation theory (d). G̃ is the reduced Coulomb Green’s
function.
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In second order PT we should take into account a term in which the potential

∆V
C
str,1γ(k) = −Zα

k2

[

3

(kR)3
(sin kR − kR cos kR)− 1

]

(31)

is considered as a perturbation. After the Fourier transform we obtain:

∆V
C
str,1γ (r) = − Zα

4R3r
(r − R)(r + 2R)(R − r + |r − R|). (32)

Using the Green’s function we perform the analytical integration in second
order PT. It gives the following result:

∆E
hfs
str,sopt(1S) = −EF (1S)

R2W 2

4

[

−
4

75
(−53 + 15C + 15 ln RW +

RW

12

(

−15 + 4C + 4 lnRW
)]

, (33)

∆E
hfs
str,sopt(2S) = EF (2S)

R2W 2

4

[ 4

75
(−107 + 60C + 60 lnRW ) +

RW

3
(17 − 8C − 8 ln RW )

]

, (34)

where we present an expansions in (RW ) up to terms of first order in square

brackets (RW (63Li) = 0.038, RW (73Li) = 0.036, RW (94Be) = 0.050,

RW (105 B) = 0.060, RW (115 B) = 0.060).
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One-loop vacuum polarization potential in coordinate representation is defined
by the following integral expression:

∆V
hfs
1γ,vp(r) =

4αgN (1 + aµ)

3m1mp

(s1s2)
α

3π

∫ ∞

1

ρ(ξ)dξ

(

πδ(r)− m2
eξ

2

r
e
−2meξr

)

,

(35)

a b c d

Figure: Effects of one- and two-loop vacuum polarization in one-photon
interaction.
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The contribution of order α5 to hyperfine structure of 1S− and 2S-states
(a1 = me/W , W = µZα):

∆E
hfs
1γ,vp (1S) =

4α2(Zα)3µ3gN (1 + aµ)

9m1mpπ
< (s1s2) >

∫

∞

1
ρ(ξ)dξ

[

1 −
m2

eξ
2

W 2

∫

∞

0
xdxe

−x
(

1+
meξ
W

)

]

=

(36)

EF (1S)
α(1 + aµ)

9π
√

1 − a21

[
√

1 − a21(1 + 6a
2
1 − 3πa

3
1) + (6 − 3a

2
1 + 5a

4
1) ln

1 +
√

1 − a21

a1

]

,

∆E
hfs
1γ,vp (2S) =

α2(Zα)3µ3gN (1 + aµ)

18m1mpπ
< (s1s2) >

∫

∞

1
ρ(ξ)dξ× (37)

[

1 −
4m2

eξ
2

W 2

∫

∞

0
x

(

1 −
x

2

)2
dxe

−x
(

1+
2meξ
W

)

]

=

EF (2S)
α(1 + aµ)

18π(4a21 − 1)5/2

{
√

4a21 − 1[11 + 2a
2
1(−29 + 8a1(−22a1 + 48a13 − 3π(4a

2
1 − 1)

2
))]+

12(1 − 10a
2
1 + 66a

4
1 − 160a

6
1 + 256a

8
1) arctan

√

4a21 − 1
}

.

We present in detail these results to demonstrate the general structure of the

obtained analytical expressions. After integrating over particle coordinates, the

results have a fairly simple form, but the following integration over the spectral

parameters gives, as a rule, rather cumbersome expressions.
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Two-loop vacuum polarization potentials have the form of a double and a
single spectral integral in coordinate space:

∆V
hfs
1γ,vp−vp(r) =

4παgN(1 + aµ)

3m1mp

(s1s2)
( α

3π

)2
∫ ∞

1

ρ(ξ)dξ

∫ ∞

1

ρ(η)dη× (38)

×
[

δ(r)− m2
e

πr(η2 − ξ2)

(

η4e−2meηr − ξ4e−2meξr
)

]

,

∆V
hfs
1γ,2−loop vp(r) =

8α3gN(1 + aµ)

9π2m1mp

(s1s2)

∫ 1

0

f (v)dv

1− v2

[

πδ(r)− m2
e

r(1− v2)
e
− 2me r√

1−v2

]

,

(39)

f (v) = v
{

(3 − v
2
)(1 + v

2
)

[

Li2

(

−
1 − v

1 + v

)

+ 2Li2

(

1 − v

1 + v

)

+
3

2
ln

1 + v

1 − v
ln

1 + v

2
− ln

1 + v

1 − v
ln v

]

(40)

+

[

11

16
(3 − v

2
)(1 + v

2
) +

v4

4

]

ln
1 + v

1 − v
+

[

3

2
v(3 − v

2
) ln

1 − v2

4
− 2v(3 − v

2
) ln v

]

+
3

8
v(5 − 3v

2
)
}

,
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G̃

a

G̃

b

G̃G̃ G̃

c d e

Figure: One- and two-loop vacuum polarization in second order PT.

G̃1S (r, 0) =
Zαµ2

4π

e−x

x
g1S (x), g1S (x) =

[

4x(ln 2x + C ) + 4x
2
− 10x − 2

]

, (41)

G̃2S (r, 0) = −
Zαµ2

4π

e−x/2

2x
g2S (x), g2S (x) =

[

4x(x − 2)(ln x + C ) + x
3
− 13x

2
+ 6x + 4

]

, (42)
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General structure of two-loop contribution (b) takes the form:

∆E
hfs
sopt vp 2 = 2 < ψ|∆V

hfs
1γ,vp · G̃ ·∆V

C
vp |ψ > . (43)

∆E
hfs
sopt vp 21(1S) = −2EF (1S)

α2

9π2
(1 + aµ)

∫

∞

1
ρ(ξ)dξ

∫

∞

1
ρ(η)dη

∫

∞

0
dxe

−2x
(

1+
meη
W

)

g1S (x), (44)

∆E
hfs
sopt vp 22(1S) = 2EF (1S)

α2

9π2
(1 + aµ)

16m2
e

W 2

∫

∞

1
ρ(ξ)ξ

2
dξ× (45)

×

∫

∞

1
ρ(η)dη

∫

∞

0
x1dx1e

−2x1

(

1+
meη
W

)

∫

∞

0
x2dx2e

−2x2

(

1+
meξ
W

)

g1S (x1, x2),

∆E
hfs
sopt vp 21(2S) = EF (2S)

α2

9π2
(1 + aµ)

∫

∞

1
ρ(ξ)dξ

∫

∞

1
ρ(η)dη

∫

∞

0

(

1 −
x

2

)

dxe
−x

(

1+
2meη
W

)

g2S (x),

(46)

∆E
hfs
sopt vp 22(2S) = −EF (2S)

α2

9π2
(1 + aµ)

2m2
e

W 2

∫

∞

1
ρ(ξ)ξ

2
dξ× (47)

×

∫

∞

1
ρ(η)dη

∫

∞

0

(

1 −
x1

2

)

dx1e
−x1

(

1+
2meξ
W

)

∫

∞

0

(

1 −
x2

2

)

dx2e
−x2

(

1+
2meη
W

)

g2S (x1, x2).

∆E
hfs
vp,vp(1S) =































6
3Li : 0.05 meV
7
3Li : 0.20 meV
9
4Be : −0.21 meV ;
10
5 B : 0.65 meV
11
5 B : 1.11 meV

∆E
hfs
vp,vp(2S) =































6
3Li : 0.01 meV
7
3Li : 0.02 meV
9
4Be : −0.02 meV .
10
5 B : 0.06 meV
11
5 B : 0.11 meV

(48)
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There is another correction for the polarization of the vacuum, which also
includes the effect of the nuclear structure. To calculate it, it is necessary to
use the potential V2γ(k). As a result, the contribution to the HFS spectrum is
determined by the following expression:

E
hfs
2γ,vp = −2µ3Z 3α4

9π2n3

∫

V2γ(k)d
4k

k3
(49)

[

5k3 − 12mek
2 − 6(k2 − 2m2

e )
√

k2 + 4m2
eArcth[

k√
k2 + 4m2

e

]

.

a b

Figure: Two photon exchange amplitudes accounting for effects of
vacuum polarization and nuclear structure. The wavy line denotes the
photon. The bold point denotes the nucleus vertex function.
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The results already obtained clearly show that the corrections to the structure
of the nucleus are dominant. In this connection, it seems useful to consider
another correction for the structure of the nucleus of order α6 shown in Fig. to
refine the results. The amplitudes of two-photon exchange with radiative
corrections to the muon line can be calculated in the framework of the
calculation method formulated in Section II. For a radiative photon, the
Fried-Yennie gauge is used, in which each of the amplitudes (muon self-energy,
muon vertex correction, amplitude with the spanning photon) can be
represented by a finite integral expression. The general structure of the
amplitudes is the following:

iM =
(Zα)2

π2

∫

d
4
k [ū(q1)Lµνu(p1)]Dµω(k)Dνλ(k)× (50)

[

v̄ρ(p2)OρωβDβτ (p2 + k)Oτλαvα(q2)
]

.

The lepton tensor Lµν is equal to a sum of three terms coming from three
amplitudes:

Lµν = L
se
µν + L

vertex
µν + L

jellyfish
µν . (51)

a b c

Figure: Direct two-photon exchange amplitudes with radiative corrections
to muon line giving contributions of order EFα(Zα) to HFS.
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Three types of contributions of order EFα(Zα) to HFS of muonic ions:

∆E
hfs
se = EF 6

α(Zα)

π2

∫

1

0
xdx

∫

∞

0

GE (k
2)GM (k2)dk

x + (1 − x)k2
, (52)

∆E
hfs
vertex−1 = −EF 24

α(Zα)

π2

∫

1

0
dz

∫

1

0
xdx

∫

∞

0

GE (k
2)GM (k2) ln[

x+k2z(1−xz)
x

]dk

k2
, (53)

∆E
hfs
vertex−2 = EF 8

α(Zα)

π2

∫

1

0
dz

∫

1

0
dx

∫

∞

0

dk

k2

{

GE (k
2)GM (k2)

[x + k2z(1 − xz)]2

[

−2xz
2
(1 − xz)

2
k
4
+ (54)

zk
2
(3x

3
z − x

2
(9z + 1) + x(4z + 7) − 4) + x

2
(5 − x)

]

−
1

2

}

,

∆E
hfs
jellyfish = EF 4

α(Zα)

π2

∫

1

0
(1 − z)dz

∫

1

0
(1 − x)dx

∫

∞

0

GE (k
2)GM (k2)dk

[x + (1 − xz)k2]3
(55)

×
[

6x + 6x
2
− 6x

2
z + 2x

3
− 12x

3
z − 12x

4
z + k

2
(−6z + 18xz + 4xz

2
+ 7x

2
z − 30x

2
z
2
−

2x
2
z
3
− 36x

3
z
2
+ 12x

3
z
3
+ 24x

4
z
3
) + k

4
(9xz

2
− 31x

2
z
3
+ 34x

3
z
4
− 12x

4
z
5]
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The dependence of basic corrections of order α5 on the nucleus is shown in Fig.

Figure: Relative order contributions δ in percent of vacuum polarization
(solid line, order α5) and nuclear structure (dashed line, order α5) to
hyperfine structure of muonic ions of lithium, beryllium and boron.

The uncertainty, due to the electromagnetic form factors of the nuclei, can be

about 1 percent of the correction to the structure of the nucleus of the order

α5. Thus, we estimate approximately the errors in the calculation of the HFS

spectrum in the form: δE hfs(63Li) = ±1 meV, δE hfs(73Li) = ±4 meV,

δE hfs(94Be) = ±4.5 meV, δE hfs(105 B) = ±14 meV, δE hfs(115 B) = ±24 meV.
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There is another correction for the polarizability of the nucleus, which is not
considered in this paper. The correction for the polarizability is of order
O(Zαm1/m2), so its possible numerical value for different nuclei (0.6 meV
(63Li), 1.8 meV (73Li), -1.6 meV (94Be), 4.7 meV (105 B), 7.3 meV (115 B)) is
comparable in magnitude to those errors that are connected with errors in
measuring nuclear form factors. At the same time, it should be noted that the
correction for the polarizability for a deuteron substantially exceeds this
estimate. Therefore, its exact calculation becomes a very urgent problem. Our
work in this direction is in progress.
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No. Contribution to the splitting (µ 6
3Li)

2+, meV (µ 7
3Li)

2+, meV
1S 2S 1S 2S

1 Contribution of order α4, 1416.07 177.01 5026.00 628.25
2 Muon AMM contribution 1.65 0.21 5.87 0.73

3 Relativistic correction α6 1.02 0.18 3.62 0.64
4 Nuclear structure correction G; -109.92 G: -13.74 G: -369.25 G: -46.16

of order α5 U: -112.02 U: -14.00 U: -376.31 U: -47.04
5 Nuclear structure and recoil G: -0.20 G: -0.03 G: -30.67 G: -3.83
6 Nuclear structure correction 3.35 0.34 10.67 1.08

of order α6 in 1γ interaction
7 Nuclear structure correction in second -2.56 -0.90 -8.19 -2.90

order perturbation theory
8 Vacuum polarization contribution 5.22 0.67 18.54 2.38

of order α5 in first order PT
9 Vacuum polarization contribution 12.05 1.11 42.83 3.94

of order α5 in second order PT
10 Muon vacuum polarization contribution 0.08 0.01 0.29 0.04

of order α6 in first order PT
11 Muon vacuum polarization contribution 0.09 0.01 0.31 0.04

of order α6 in second order PT
12 Vacuum polarization contribution 0.07 0.01 0.24 0.03

of order α6 in first order PT
13 Vacuum polarization contribution 0.14 0.02 0.53 0.05

of order α6 in second order PT
14 Nuclear structure and vacuum -1.62 -0.20 -5.85 -0.73

polarization correction of order α6

15 Nuclear structure and muon vacuum -0.14 -0.02 -0.51 -0.06

polarization correction of order α6

16 Hadron vacuum polarization 0.06 0.01 0.21 0.03

contribution of order α6

17 Radiative nuclear finite size -0.34 -0.04 -1.24 -0.15

correction of order α6

Summary contribution 1325.02 164.65 4693.40 583.38
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No. Contribution to the splitting (µ 9
4Be)

3+ , meV
1S 2S

1 Contribution of order α4, -4353.49 -544.19
2 Muon AMM contribution -5.08 -0.64

3 Relativistic correction α6 -5.57 -0.99
4 Nuclear structure correction G; 441.09 G: 55.14

of order α5 U: 449.54 U: 56.19
5 Nuclear structure and recoil G: -97.71 G: -12.21
6 Nuclear structure correction -17.57 -1.78

of order α6 in 1γ interaction
7 Nuclear structure correction in second 12.64 4.36

order perturbation theory
8 Vacuum polarization contribution -17.97 -2.30

of order α5 in first order PT
9 Vacuum polarization contribution -42.62 -3.92

of order α5 in second order PT
10 Muon vacuum polarization contribution -0.34 -0.04

of order α6 in first order PT
11 Muon vacuum polarization contribution -0.36 -0.05

of order α6 in srcond order PT
12 Vacuum polarization contribution -0.24 -0.03

of order α6 in first order PT
13 Vacuum polarization contribution -0.54 -0.05

of order α6 in second order PT
14 Nuclear structure and vacuum 5.31 0.66

polarization correction of order α6

15 Nuclear structure and muon vacuum 0.55 0.07

polarization correction of order α6

16 Hadron vacuum polarization -0.25 -0.03

contribution of order α6

17 Radiative nuclear finite size 1.44 0.18

correction of order α6

Summary contribution -4080.71 -505.82
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