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In this work we study the energy spectrum of muonic

hydrogen

Regular hydrogen:
electron e− + proton p

Muonic hydrogen:
muon µ− + proton p
muon mass mµ ≈ 200me

Bohr radius rµ ≈ 1
200 re
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Proton radius puzzle

Earlier measurements of the proton charge radius (spectroscopy and
scattering in eH) → rp = 0.8775(51) fm

P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended
values of the funda-mental physical constants: 2014, Rev. Mod.
Phys. 88, 035009 (2016).

Lamb shift in µH → rp = 0.84184(67) fm

R. Pohl, A. Antognini, F. Nez et al., Nature 466, 213 (2010)

Lamb shift in µH → rp = 0.84087(39) fm

A. Antognini et al., Science 339, 417 (2013)

2S-4P transition frequency measurement in eH → rp = 0.8335(95) fm

A. Beyer, et al., Science 358, 79–85 (2017)

1S-3S transition frequency measurement in eH → rp = 0.877(13) fm

H. Fleurbaey et al. Phys. Rev. Lett. 120, 183001 (2018)
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Proton radius puzzle

"Proton radius puzzle"is a disagreement between the value of the proton
charge radius rp obtained from experiments involving muonic hydrogen and
those based on electron-proton systems.
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The aim of the work

∆ELs
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23P3/2

25P3/2

∆Ehfs(2S)

∆Ẽhfs(2P3/2)

∆Ẽhfs(2P1/2)

One way to overcome the
crisis situation is a deeper
theoretical analysis of the
muonic hydrogen energy
spectrum:

The problem of a more
accurate theoretical
construction of the
particle interaction
operator

The calculation of new
corrections in the energy
spectrum of muonic
hydrogen.
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Among the various electromagnetic interactions, the processes of two-photon
meson production take a special place. First, they have been studied
experimentally for quite a long time, for which a rich material has been
accumulated

V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rep.
15, 181 (1975).

Secondly, with the development of the quark model and nonperturbative methods

of quantum chromodynamics, such reactions, as well as the reverse decay

processes of mesons into two photons, were constantly in the field of intensive

theoretical studies.
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A new round of interest in γ + γ → meson processes is connected with their
possible role as a new source of interactions between leptons and nucleons. Since
in atomic physics there are precise experiments to measure the fine and hyperfine
structure of the spectrum, any new contributions to the particle interaction
operator are of interest and can be studied experimentally. The first estimates of
the contribution of effective meson exchanges in muonic hydrogen, which have
already appeared, show that this contribution can be significant

F. Hagelstein, V. Pascalutsa, PoS CD15 077 (2016).

H. Q. Zhou, H. R. Pang, Phys. Rev. A 92, 032512 (2015).

N. T. Huong, E. Kou, B. Moussallam, Phys. Rev. D 93, 114005 (2016).

H.-Q. Zhou, Phys. Rev. C 95, 025203 (2017).

A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A. Martynenko, and
R. N. Faustov, Phys. Part. Nucl. Lett. 14, 857 (2017) ; arXiv:1704.07702 [hep-ph].

A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A. Martynenko, and
A. E. Radzhabov, Phys. Lett. B 776, 105 (2018);
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Effective one meson exchange

New direction in the study of the energy spectrum (µp) is connected with
processes of two-photon interaction leading to effective one meson
exchange

Two-photon exchange between proton and muon by pseudoscalar (P),
axial-vector (AV) and scalar (S) meson.
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Transition form factor

The general parameterization of scalar meson - two photon vertex function:

T
µν
S (t, k1, k2) = e

2

{

A(t2, k2
1 , k

2
2 )(g

µν(k1 · k2)− k
ν
1 k

µ
2 )+ (1)

B(t2, k2
1 , k

2
2 )(k

µ
2 k

2
1 − k

µ
1 (k1 · k2))(kν

1 k
2
2 − k

ν
2 (k1 · k2))

}

.

M. K. Volkov, E. A. Kuraev, and Yu. M. Bystritskiy, Phys. Atom. Nucl. 73, 443
(2010).

F Giacosa, Th. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 77, 034007 (2008).

F.A. Martynenko () Hadronic contributions September 17-22, 2018 9 / 30



Correction to the energy level

S-states:

ψ100(r) =
W 3/2

√
π

e−Wr , ψ200(r) =
W 3/2

2
√
2π

e−Wr/2

(

1− Wr

2

)

, W = µZα,

(2)
P-states:

Ψ2P(p) = (εnp)R21(p), R21(p) =
128√
3π

W 7/2p

(4p2 +W 3)3
(3)

where ε is the polarization vector of the muon orbital motion,
np = (0,p/p).
The correction to the energy level is determined in integral form in
momentum representation:

∆E =

∫

Ψnlm(q)
dq

(2π)3/2

∫

Ψnlm(p)
dp

(2π)3/2
∆V (p, q). (4)
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The muon-proton interaction amplitude

The muon-proton interaction amplitude via the meson exchange is:

iM = −α
2gs

π2

∫

d4k

k4(k2 − 2m1k0)
A(t2, k2, k2)(gµν(k1 · k2)− kν1 k

µ
2 )× (5)

[ū(q1)γµ(p̂1 − k̂ +m1)γνu(p1)][v̄ (p2)v(q2)]
1

t2 +M2
s

,

where we set t = p1 − q1 = 0, because this momentum is small. This leads
to the cancelation of the term with the function B(t2, k21 , k

2
2 ). To obtain

the interaction operator we use the projection operators on the S - states
with total angular momentum of the atom F = 0, 1 which are constructed
by means of free wave functions at the rest frame:

Π̂F=0[1] = u(0)v̄ (0)|F=0[1] =
1

2
√
2
(1 + γ0)γ5[ε̂] (6)

Π̂∗

F=0[1] = v(0)ū(0)|F=0[1] =
1

2
√
2
γ5[ε̂

∗](1 + γ0).
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Projection operators

To calculate P energy levels we introduce on first step the projection
operators on the state with total angular momentum of a muon J = 1/2:

Π̂τ = u(0)ε∗τ (0)|J=1/2 =
1√
3
γ5(γτ − vτ )ψ(0), (7)

Π̂∗

τ = ετ (0)ū(0)|J=1/2 =
1√
3
ψ̄(0)(γτ − vτ )γ5,

where v = (1, 0, 0, 0), ψ(0) is the new wave function that describes muon
with J = 1/2. On the second step we introduce the projection operators on
the states with total angular momentum of the atom F = 0, 1

Π̂F=0[1] = ψ(0)v̄ (0)|F=0[1] =
1

2
√
2
(1 + γ0)γ5[ε̂] (8)

Π̂∗

F=0[1] = v(0)ψ̄(0)|F=0[1] =
1

2
√
2
γ5[ε̂

∗](1 + γ0).
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The shift of 2S level

Introducing the projection operators we can write the numerator of the
amplitude as the trace of all gamma factors. For example, in the case of
S-states we have:

T (2SF=0) = Tr
[1 + γ0

2
√
2

γ5(p̂2−m2)(q̂2−m2)γ5
1 + γ0

2
√
2

(q̂1+m1)γµ(p̂1−k̂+m1)γν(p̂1+m1)
]

(9)

T (2SF=1) = Tr
[1 + γ0

2
√
2

ε̂(p̂2−m2)(q̂2−m2)ε̂
∗ 1 + γ0

2
√
2

(q̂1+m1)γµ(p̂1−k̂+m1)γν(p̂1+m1)
]

(10)

After trace calculation using package Form we obtain:

T2SF=1
= T2SF=0

= k2(3k0 + 2m1)− 2m1k
2
0 . (11)

We get that there is no contribution to hyperfine splitting of the S-state. At the

same time there is a shift of the level 2S as whole.
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Momentum integrals for 2P state

For P-states, the calculation of the trace gives:

T2P =
(pq)

pq

[

−2

3
m1k

2
0 + k

2
k0 +

2

3
m1k

2

]

+ pq

(

− 5

18

k2
0

m1
+

1

4

k0k
2

m2
1

− 1

18

k2

m1

)

. (12)

To get the contribution in energy levels we need to calculate the integrals over the
momentum of initial and final states p and q. After the integration in Mathematica we
have:

J (1)
2P =

∫

R21(q)
dq

(2π)3/2

pq

pq

(p− q)2 +M2
s

R21(p)
dp

(2π)3/2
=

W 5

4M4
s

1

(1 + W
Ms

)4
, (13)

J (2)
2P =

∫

R21(q)
dq

(2π)3/2

pq

m2
1

(p− q)2 +M2
s

R21(p)
dp

(2π)3/2
=

W 5

8M2
s m

2
1

3 + 4 W
MS

+ 3W 2

2M2
S

(1 + W
Ms

)4
,

(14)
where we use

R21(p) =
128√
3π

W 7/2p

(4p2 +W 3)3
(15)
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Loop momentum integrals

It is also necessary to calculate two integrals over the loop momentum k .

I1 = 2m1

∫

d4(k2 + 2k2
0 )

k2(k4 + 4m2
1k

2
0 )

Λ4

(Λ2 + k2)2
, (16)

I2 =
m1

18

∫

d4k(4k2
0 − k2)

k2(k4 + 4m2
1k

2
0 )

Λ4

(Λ2 + k2)2
, (17)

where we use the monopole parametrization of the function A(0, k2, k2) for each
variable. These integrals can be calculated analytically in the Euclidean space:











k2 → −(kE )2

k2
0 → −(kE

0 )
2

k0 → ikE
0

,

{

kE
0 → kCos(φ)

|kE | → kSin(φ)

After the integration in Wolfram Mathematica we obtain:

I1 = m1
π2

6

[

−9 + 36 ln 2 + 2a21(−7 + 12 ln 2) − 12(3 + 2a21) ln a1
]

,

I2 =
π2

108
m1[−9 + a

2
1(−5 + 6 ln 2)− 6a21 ln a1], (18)

The integrals are presented after an expansion over a1 = 2m1/Λ up to terms of the

second order.
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Analytical results for shifts

Taking together intermediate relations we obtain the shift of 2S and
2P-states in the form:

∆E
Ls(2S) =

α5µ3gsm1AS

96πM2
s

(2 + W 2

M2
S

)

(1 + W
MS

)4

[

−9+36 ln 2+2a21(−7+12 ln 2)−12(3+2a21) ln a1
]

.

(19)

∆E
Ls(2P) =

α7µ5gsAS

288πm1M2
s (1 +

W
Ms

)4

{[3

4
+

W

MS

+
3

8

W 2

M2
S

]

[

−9+a
2
1(−5+6 ln 2)−6a21 ln a1

]

−

(20)
3m2

1

M2
S

[

−9 + 36 ln 2 + 2a21(−7 + 12 ln 2)− 12(3 + 2a21) ln a1
]

}

,

where parameter AS = A(0, 0, 0). For its calculation we use the quark model.
The transition form factor parametrization

A(0, k2, k2) = A(0, 0, 0)
Λ4

(k2 + Λ2)2
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Transion form factor 2γ → S

One of the main quantities that determine the energy shifts is the vertex
function, in which two virtual photons are transformed into a scalar meson.
In local quark model it is given by the loop integral of the following form:

T
µν

S
= 4πα

∫
d4k

(2π)4
Tr [γ

µ
(k̂ + mq )

(k2 − m2
q)

γ
ν

(k̂ − k̂2 + mq )

[(k − k2)2 − m2
q ]

(k̂ + k̂1 + mq)

[(k + k1)2 − m2
q ]

] + (k1, µ) ↔ (k2, ν). (21)

As noted above, this tensor is determined by two scalar functions
A(t2, k21 , k

2
2 ) and B(t2, k21 , k

2
2 ). We are interested in the case when the

kinematics is t2 = 0, k21 = k22 and only the contribution of the function
A(t2, k21 , k

2
2 ) remains. In the local quark model, it has the form:

A(t2, k21 , k
2
2 ) = gSqq

Nc

2π2
Trf [τMQQ]ISγγ(t

2, k21 , k
2
2 ). (22)

For the isoscalar meson (σ) the trace over flavour Trf [τMQQ] = 5/9,
For the isovector state (a0(980)) Trf [τMQQ] = 1/3.

The coupling constant of scalar meson with the quarks is gSqq =
mq

fπ
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Feynman parameterization

The loop momentum integral ISγγ(t
2, k21 , k

2
2 )

ISγγ (t
2, k2

1 , k
2
2 ) =

∫

d4k

(2π)4
Tr [γµ(k̂ +mq)γ

ν(k̂ − k̂2 +mq)(k̂ + k̂1 +mq)] (23)

1

k2 −m2
q

1

(k − k2)2 −m2
q

1

(k + k1)2 −m2
q

+ (k1, µ) ↔ (k2, ν),

can be directly calculated using the Feynman parameterization and intermediate
dimensional regularization:

1

a
α1
1 . . . aαn

n

=
Γ(
∑n

1 αi )
∏n

i=1 Γ(αi)

∫ 1

0

dx1

∫ x1

0

dx2 . . .

∫ xn−2

0

dxn−1

(1− x1)
α1−1 ∏n−1

i=2 (xi−1 − xi )
α1−1

[a1 + (a2 − a1)x1 + . . .+ (an − an−1)xn−1]
∑

n
1 αi

where ai is denominators of propagators.
These calculations and integration over d4k can be performed using a package
"Feynman parameters and trace"for Wolfram Mathematica.

T. West, Comp. Phys. Comm. 77, 286 (1993).
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After integration over d4k we obtain:

ISγγ (t
2, k2

1 , k
2
2 ) = − mq

(k1 · k2)

1
∫

0

d{x1x2x3}
B + (1− 2x1x2)(k1 · k2) + k2

1x
2
1 + k2

2x
2
2

B +m2
q

, (24)

d{x1x2x3} = d(x1x2x3)δ [1− (x1 + x2 + x3)] ,

B = −
(

t
2
x1x2 + k

2
1x1x3 + k

2
2x2x3

)

, 2(k1 · k2) = t
2 − k

2
1 − k

2
2 .

Setting further our kinematics t2 = 0, k2
1 = k2

2 = −k2 and calculating integrals over
d{x1x2x3} we obtain:

ISγγ(0, k
2, k2) =

mq

k2









−2 +

4m2
q ln

(√
k2
√

4m2
q+k2+2m2

q+k2

2m2
q

)

√

k2 (4m2
q + k2)









(25)
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Analytical result for AS

To get the value of AS = A(0, 0, 0) we use the expansion of the integral
ISγγ(0, k

2, k2) at small momenta:

ISγγ(0, k
2, k2) ≈ − 1

3mq

+
k2

15m3
q

. (26)

So, for the isoscalar and isovector cases we obtain:

AI=0
S = A(0, 0, 0) = − 1

2π2fπ

5

9
, AI=1

S = A(0, 0, 0) = − 1

2π2fπ

1

3
. (27)
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Comparison of form factors

Comparison of the phenomenological transition form factor Λ4/(Λ2 + k2)2

of two virtual photons to scalar meson with the form factor calculated in
the local quark model ISγγ(0, k

2, k2)/I (0, 0, 0).

The form factor Λ4/(Λ2 + k2)2 is usually used for experimental data
description.
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For a check of value A(0, 0, 0) we use the results from the papers

M. K. Volkov, E. A. Kuraev, and Yu. M. Bystritskiy, Phys. Atom. Nucl. 73, 443
(2010).

F Giacosa, Th. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 77, 034007 (2008).

in which a calculation of AS = A(t2 = M2
s , 0, 0) was carried out on the

basis of quark model. Using the quark-loop amplitude contributing to the
decay S → γ + γ they presented the decay amplitude:

T
µν
Sγγ = −αgσu

πmu

(gµν(k1k2)− kν1 k
µ
2 )aSγγ . (28)

The expression for the decay width which is measured in experiment, has
the form:

ΓSγγ =
M3

s α
2g2

σu

64π3m2
u

|aSγγ |2 (29)
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Taking the experimental value of ΓSγγ or its theoretical estimate we can
find the value of phenomenological constant aSγγ and relate it to our
parameter AS . Corresponding numerical values

|AS | =
gSuaSγγ

4π2mue
(30)

for scalar mesons σ(450), σ(550), σ(600), are the following:

|AS(σ(0.450))| = 0.28 GeV−1, |AS(σ(0.550))| = 0.26 GeV−1, (31)

|AS(σ(0.600))| = 0.25 GeV−1,

where we introduced an additional factor outside the mass shell, based on
the assumption

AS(t, 0, 0) = AS(t = M2
S , 0, 0)e

t−M2
S

M2
S . (32)
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Numerical results

The experimental value of the mass and the width of the σ meson is not
well established. So we make estimations for the different masses of σ
meson.

Scalar mesons contribution to the energy spectrum of muonic hydrogen.
S meson Γσ→γγ AS , from Γσ→γγ AS from quark ∆E ls(2S) ∆E ls(2P)

in keV in GeV model in GeV−1 in µeV in µeV

σ(450) 2.18 -0.28 -0.30 -13.7538 0.000023

σ(550) 3.53 -0.26 -0.30 -11.2657 0.000014

σ(600) 4.3 -0.25 -0.30 -10.1182 0.000011

Our results are in agreement with the estimate made in

H.-Q. Zhou, arXiv:1608.06460.
The obtained contribution to the Lamb shift is significant and should be
used for comparison with experimental data.
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Thank you for attention!
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