RELATIVISTIC INVESTIGATION OF THE TRITON IN THE BETHE-SALPETER-FADDEEV APPROACH

<u>S. A. Yurev</u>, S. G. Bondarenko, V. V. Burov Laboratory of Theoretical Physics

> Joint Institute for Nuclear Research DUBNA 20.09.2018

object

Three-nucleon bound states systems:

³He(ppn) T(³H)(nnp)

The study of these systems at relativistic energies

The study of the influence of <u>P</u> and <u>D</u> states on the **binding energy** and **form factors**

 $T^{(i)}(p,p') = t^{(i)}(p,p') + \int dp'' t^{(i)}(p,p'') G(p'') [T^{(j)}(p'',p') + T^{(k)}(p'',p')]$

Method

Relativistic Faddeev equation

Two-particle t-matrix

$$T^{(i)}(p_i, q_i; p'_i, q'_i; P) = t^{(i)}(p_i, q_i; p'_i, q'_i; P) +$$

$$\int dp_i'' dq_i'' t^{(i)}(p_i, q_i; p_i', q_i'; P) G(p'', q'', P) \times$$

$$\times [T^{(j)}(p_j'', q_j''; p_j', q_j'; P) + T^{(k)}(p_k'', q_k''; p_k', q_k'; P)]$$

Components of the full three-particle t matrix $T = T^1 + T^2 + T^3$ Two-particle propagator

$$G_i = (k_j^2 - m_n^2 + i\epsilon)^{-1} (k_k^2 - m_n^2 + i\epsilon)^{-1}$$

The Bethe-Salpeter equation

Equation for the relativistic system of two particles

Separable potential of nucleon-nucleoninteractiong - form factor of
potential $V(p, p') = \sum_{ij=1}^{N} \lambda_{ij} g_i(p) g_j(p')$ g - form factor of
potentialN - rank of potential

Yamaguchi functions for form factor of potential

S state

$$g_Y^{[S]}(p_0, p) = \frac{1}{-p_0^2 + p^2 + \beta_0^2 - i\epsilon}$$
P state

$$g_Y^{[P]}(p_0, p) = \frac{\sqrt{|-p_0^2 + p^2|}}{(-p_0^2 + p^2 + \beta_1^2 - i\epsilon)^2}$$
D state

$$g_Y^{[D]}(p_0, p) = \frac{C(-p_0^2 + p^2)}{(-p_0^2 + p^2 + \beta_2^2 - i\epsilon)^2}$$

Partial-wave decomposition

$$\Psi(\mathbf{p},\mathbf{q};s) = \sum_{l\lambda LM} \Psi_{l\lambda L}(p,q;s) \mathcal{Y}_{l\lambda LM}(\mathbf{p},\mathbf{q})$$

где

$$\mathcal{Y}_{l\lambda LM}(\mathbf{p},\mathbf{q}) = \sum_{m\mu} Y_{lm}(\mathbf{p}) Y_{\lambda\mu}(\mathbf{q})$$

$$t(\mathbf{p}, \mathbf{p}') = \sum_{lm} t_l(p, p') Y_{lm}(\mathbf{p}) Y_{lm}(\mathbf{p}')$$

The system of integral equations for Φ

$$\begin{split} \Phi^{a}_{jl\lambda L}(q_{0},q) &= -\frac{1}{4\pi^{3}} \sum_{b} \sum_{kn} \sum_{l'\lambda'} \int_{-\infty}^{\infty} dq'_{0} \int_{0}^{\infty} q'^{2} dq' \times \\ Z^{ab}_{jkl\lambda l'\lambda' L}(iq_{0},q;iq'_{0},q';s) \frac{\tau^{b}_{knl'\lambda'}[(\frac{2}{3}\sqrt{s}+iq'_{0})^{2}-q'^{2}]}{(\frac{1}{3}\sqrt{s}-iq'_{0})^{2}-q'^{2}-m^{2}} \Phi^{b}_{jl'\lambda' L}(q'_{0},q') \\ Z^{ab}_{jkl\lambda l'\lambda' L}(iq_{0},q;iq'_{0},q';s) &= \Delta^{a}_{l} \Delta^{b}_{l'} \underline{C^{ab}} \int_{-1}^{1} dx \underline{K^{L}_{l\lambda l'\lambda'}}(q,q',x) \times \\ \frac{g^{a}_{jl}(-\frac{1}{2}q_{0}-q'_{0},\sqrt{\frac{1}{4}q^{2}+q'^{2}+qq'x}) g^{b}_{kl'}(q_{0}+\frac{1}{2}q'_{0},\sqrt{q^{2}+\frac{1}{4}q'^{2}+qq'x}}{(\frac{1}{3}\sqrt{s}+q_{0}+q'_{0})^{2}-(q^{2}+q'^{2}+2qq'x)-m^{2}} \end{split}$$

a,b = ^{2S+1} L_J ${}^{1}S_{0}, {}^{3}S_{1}, {}^{3}D_{1}, {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}$

Spin-isospin structure of the system

 $C^{ab} = (S,I) \qquad (S,I) = \{(1,0);(1,1);(0,1);(0,0)\}$ $C^{ab} = C^{(s_A,i_A)(s_B,i_B)} =$

 $= <(s_1s_2)s_A, s_3, S|(s_2s_3)s_B, s_1, S > <(i_1i_2)i_A, i_3, I|(i_2i_3)i_B, i_1, I >$

The influence of the orbital angular momentum

$$K_{\lambda\lambda'L}^{(aa')}(q,q',\cos\vartheta_{qq'}) = (4\pi)^{3/2} \frac{\sqrt{2\lambda+1}}{2L+1}$$
$$\sum_{mm'} C_{lm\lambda0}^{Lm} C_{l'm'\lambda'm-m'}^{Lm} Y_{lm}^*(\vartheta,0) Y_{l'm'}(\vartheta',0) Y_{\lambda'm-m'}(\vartheta_{qq'},0)$$

 $\sqrt{\alpha}$

$$\cos\vartheta = \left(\frac{q}{2} + q'\cos\vartheta_{qq'}\right) / \left|\frac{\mathbf{q}}{2} + \mathbf{q}'\right|, \qquad \cos\vartheta' = \left(q + \frac{q'}{2}\cos\vartheta_{qq'}\right) / \left|\mathbf{q} + \frac{\mathbf{q}'}{2}\right|$$

Iterative method for solving integral equations

$$f(x) = \int_{a}^{b} K(x, y, s) f(y) dy$$

$$f_0(x) = 1$$

$$f_1(x) = \int_a^b K(x, y, s) f_0(y) dy$$

$$f_i(x) = \int_a^b K(x, y, s) f_{i-1}(y) dy$$

bound-state condition

$$\lim_{i \to \infty} \frac{f_i(x,s)}{f_{i+1}(x,s)} = 1$$

$$\sqrt{s} = 3m - E_{bs}$$

The binding energy of the triton T (nnp) in the case of the Yamaguchi potential Exp.: 8.48 MeV

$\mathbf{p}_{\mathbf{D}}$	${}^{1}S_{0} - {}^{3}S_{1}$	${}^{3}D_{1}$	${}^{3}P_{0}$	${}^{1}P_{1}$	${}^{3}P_{1}$	
4	9.221	9.294	9.314	9.287	9.271	
	0	0.073	0.020	-0.027	-0.016	0.050
5	8.819	8.909	8.928	8.903	8.889	
	0	0.090	0.019	-0.025	-0.014	0.070
6	8.442	8.545	8.562	8.540	8.527	
	0	0.103	0.017	-0.022	-0.013	0.085

1S0 amplitude

Imaginary part

3S1 amplitude

Imaginary part

3D1 amplitude

Imaginary part

3P0 amplitude

Imaginary part

1P1 amplitude

Imaginary part

3P1 amplitude

Imaginary part

Form factors of the three-nucleon nuclei $2F_{ch}(^{3}He) = (2F_{ch}^{p} + F_{ch}^{n})F_{1} - \frac{2}{3}(F_{ch}^{p} - F_{ch}^{n})F_{2}$ $F_{ch}(^{3}H) = (F_{ch}^{p} + 2F_{ch}^{n})F_{1} + \frac{2}{3}(F_{ch}^{p} - F_{ch}^{n})F_{2}$ $\mu(^{3}He)F_{mag}(^{3}He) = G^{n}F_{1} + \frac{2}{3}(G^{n} + G^{p})F_{2}$ $\mu(^{3}H)F_{mag}(^{3}H) = G^{p}F_{1} + \frac{2}{3}(G^{n} + G^{p})F_{2}$

 $F_{ch}^{p}, F_{ch}^{n}, G^{p}, G^{n}$ electric and magnetic Form Factors of proton and neutron

 F_1 F_2

from amplitudes of states Φ(solution of BSF equation)

Form factors of the three-nucleus nuclei

$$F_{1}(Q) = \int dp_{4} \int d\mathbf{p} \int dq_{4} \int d\mathbf{q} G_{1}G_{2}G_{3}G_{3}'\Psi_{S}^{*}(p_{4}, p, q_{4}, q)\Psi_{S}(p_{4}, p, q_{4}, |\mathbf{q} - \frac{2}{3}\mathbf{Q}|)$$

$$= 4\pi^{2} \int dp_{4} \int dp \int dq_{4} \int dq \int_{-1}^{1} d[Cos(\mathbf{p}, \mathbf{q})] \int_{-1}^{1} d[Cos(\mathbf{q}, \mathbf{Q})]p^{2}q^{2}$$

$$G_{1}G_{2}G_{3}G_{3}'\Psi_{S}^{*}(p_{4}, p, q_{4}, q)\Psi_{S}(p_{4}, p, q_{4}, |\mathbf{q} - \frac{2}{3}\mathbf{Q}|)$$

$$F_{2}(Q) = -3 \int dp_{4} \int d\mathbf{p} \int dq_{4} \int d\mathbf{q} G_{1}G_{2}G_{3}G_{3}'\Psi_{S}^{*}(p_{4}, p, q_{4}, q)\Psi_{S'}(p_{4}, p, q_{4}, |\mathbf{q} - \frac{2}{3}\mathbf{Q}|)$$

$$= -12\pi^{2} \int dp_{4} \int dp \int dq_{4} \int dq \int_{-1}^{1} d[Cos(\mathbf{q}, \mathbf{Q})]p^{2}q^{2}$$

$$CG_{3}G_{3}'\Psi_{S}^{*}(p_{4}, p, q_{4}, q)\Psi_{S'}(p_{4}, p, q_{4}, \sqrt{q^{2} + \frac{4}{9}Q^{2} - \frac{4}{3}qQCos(\mathbf{q}, \mathbf{Q})})$$

Charge form factors of 3He

Charge form factors of 3He

Magnetic form factors of 3He

 $F_{M}(Q^{2})$

Magnetic form factors of 3He

[T = 3H = (nnp)] and [3He = (npp)] were investigated. For this, a relativistic generalization of the Faddeev equation was applied.

- As a two-particle t matrix, we used the solution of the Bethe-Salpeter equation.
- The potential of NN interaction is taken in a separable form.
- The system of integral equations describing T was solved by the iterative method.
- The binding energy and the amplitudes of its S, P, and D states were calculated. Amplitudes used to calculation charge and magnetic formfactors of the three-nucleus nuclei.

Bound state energy of Triton

Experiment: $E_{bs} = 8.48 MeV$

relativistic

Potential	only S -state	with D
GRAZ-II(1)	8.716	8.716
GRAZ-II(2)	8.298	8.298
GRAZ-II(3)	7.894	7.894
Paris-I	7.545	7.545

nonrelativistic

Potential	only S -state	with D
GRAZ-II(1)	8.372	8.334
GRAZ-II(2)	7.964	7.934
GRAZ-II(3)	7.569	7.548

