Anisotropic Flow in Heavy-Ion Collisions from LHC to NICA

Arkadiy Taranenko

National Research Nuclear University MEPhI

The XXIVth International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", September 17 - 22, 2018, JINR Dubna, Russia.

Many thanks for the invitation!

OUTLINE

- **1.** Why measure anisotropic flow?
- 2. Flow (Vn) and sQGP at RHIC/LHC
- 3. Scaling properties of V_n
- 4. Collective effects in small systems
- 5. Flow results from Beam Energy Scan
- 6. Outlook for flow measurements at NICA

Anisotropic Flow in Heavy-Ion Collisions: 1988

Provides reliable estimates of pressure & pressure gradients

Can address questions related to thermalization

Gives insights on the transverse dynamics of the medium

Provides access to the transport properties of the medium: EOS, sound speed (c_s) , viscosity, etc H

Plastic Ball Collaboration,3H.H. Gutbrod et al., Phys. Lett. B216, 267 (1989)

Anisotropic Flow at RHIC/LHC - methods

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Different methods, non-flow, fluctuations

Anisotropic Flow at LHC – data vs models

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

Shear viscosity suppresses higher flow harmonics more strongly

Anisotropic Flow at RHIC/LHC – scaling relations

Flow is acoustic

PRC 84, 034908 (2011) P. Staig and E. Shuryak.

- \triangleright v_n measurements are sensitive to system shape (ε_n), system size (RT) and transport coefficients $\left(\frac{\eta}{s}, \frac{\zeta}{s}, \dots\right)$. arXiv:1305.3341
- Acoustic ansatz \geq
 - \checkmark Sound attenuation in the viscous matter reduces the magnitude of v_n .
- > Anisotropic flow attenuation,

$$\frac{\mathbf{v}_{n}}{\mathbf{\varepsilon}_{n}} \propto \mathbf{e}^{-\beta n^{2}}, \ \beta \propto \frac{\eta}{s} \frac{1}{RT}$$

-1

From macroscopic entropy considerations $S \sim (RT)^3 \propto \frac{dN}{dn}$

Roy A. Lacey, et al.

3)

arXiv:1601.06001

Roy A. Lacey, et al.

Acoustic Scaling -

Characteristic 1/(RT) viscous damping validated

✓ Clear pattern for n² dependence of viscous attenuation

 \checkmark Important constraint for η /s & ζ/s

CAN WE TURN THE QGP OFF?

Small Systems Beam Energy Scan

M. Strickland, QM2018

Collectivity in Small Colliding Systems

Definitions: Azimuthal anisotropy vs flow

- Azimuthal anisotropy = experimental observations without reference to a specific physical interpretation [`double hump' after non-flow subtraction which is long range in rapidity]
- Collective flow = azimuthal anisotropies established during the hydrodynamic stage in response to initial geometry (final state interactions).

Final state interactions: Hydrodynamic Flow? Initial momentum correlations: CGC? How to distinguish initial vs final state effects ?

Azimuthal anisotropy from hydrodynamics

R. Weller and P. Romatschke, PLB 774, 351-356(2017).

"ONE FLUID TO RULE THEM ALL"?

Viscous Hydrodynamics results strongly suggest that the **observed azimuthal anisotropies can be understood in terms of collective response to the initial geometry**, aka hydrodynamic flow.

Viscous Hydrodynamic Comparison

PHENIX, arXiv:1805.02973

Following the ordering of eccentricities. Good agreement with v₂, v₃ (p_T) for all three systems No tuning of parameters or options for different systems Indication of a strongly coupled QCD matter?

Sub-nucleonic fluctuations

- A crucial ingredient in all successful hydrodynamical descriptions is the inclusion of **sub-nucleonic fluctuations**.
- Without them, initial eccentricities generated are too small to produce the observed azimuthal anisotropy.

R. Weller and P. Romatschke, PLB 774, 351-356 (2017)
H. Mäntysaari and B. Schenke, Nucl. Part. Phys. Proc. 289-290 457 (2017)
H. Mäntysaari, B. Schenke, C. Shen, P. Tribedy, PLB 772, 681 (2017)
J. Albacete, H. Petersen, and A. Soto-Ontoso, Phys.Lett. B778, 128 (2018)

Acoustic Scaling - RT

 $ln\left(\frac{v_n}{\epsilon_n}\right) \propto A \frac{\eta}{s} \left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}}$

R.A. Lacey Phys. Rev. C 98, 031901(R), 2018

✓ Characteristic 1/(RT) viscous damping validated

✓ Clear pattern for n² dependence of viscous attenuation

 Viscous damping supersedes the influence of eccentricity for "small" systems R.A. Lacey Phys. Rev. C 98, 031901(R), 2018

- ✓ Characteristic 1/(RT) viscous damping validated
- ✓ Clear pattern for n² dependence of viscous attenuation
- Viscous damping supersedes the influence of eccentricity for "small" systems

Acoustic Scaling – different systems

R.A. Lacey Phys. Rev. C 98, 031901(R), 2018

Quantitative study of the QCD phase diagram

Validation of the crossover transition leading to the QGP

→ Necessary requirement for CEP

Strategy for RHIC BES

- Map turn-off of QGP signatures
- Location of the Critical End Point (CEP)?
- Location of phase coexistence regions?
- 1st order phase transition signs
- Detailed properties of each phase?

$$\frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \hat{q}(T), \alpha_s(T), \text{ etc}$$

Beam Energy Dependence of Directed Flow (v_1)

Beam Energy Dependence of Directed Flow (v_1)

Minimum in slope of directed flow (dv_1/dy) as a function of beam energy for baryons may suggest sudden softening of EOS - sign of the 1st order phase transition

Proton v_1 probes interplay of baryon transport and hydro behavior

None of the models explains the data • Systematics associated with the models is quite large

Centrality Dependence of Directed Flow (v_1)

Prospects for directed flow measurements: NA61/SHINE

INR RAS + MEPhI

- Results will be important for flow measurements at BM@N, MPD (NICA) and CBM(FAIR)
- Different colliding systems study the effect of spectator matter
 22

Prospects for directed flow measurements: NA61/SHINE

V. Klochkov and I. Selyuzhenkov: Anisotropic flow with NA61/SHINE at CERN SPS (QM2018)

2) Slope of proton v1 changes sign at about 50% centrality 3) Slope of pions v1 is always negative

20.09.2018 15:30 Anisotropic flow measurement from NA61/SHINE and NA49 ₂₃ experiments at CERN SPS , Speaker: Mr. Oleg Golosov (MEPhI)

Prospects for directed flow measurements: STAR BES2

Beam Energy Dependence of Elliptic Flow (v_2)

STAR: Phys. Rev. C 86 (2012) 54908

Surprisingly consistent as the energy changes by a factor ~400 Initial energy density changes by nearly a factor of 10 No evidence from v2 of charged hadrons for a turn off of the QGP *How sensitive is* v_2 *to QGP*?

Substantial particleantiparticle split at lower energies

•The number of quark scaling in elliptic flow is broken at low energies

•Do φ-mesons or multi-strange particles deviate?

v_3 is more sensitive than v_2

Models show that higher harmonic ripples are more sensitive to the existence of a QGP phase

In models, v_3 goes away when the QGP phase disappears

Prospects for (v₃) PID measurements: STAR BES 1-2

Phys. Rev. C 88, 014902 (2013)

 NCQ-scaling holds for v2 of particles
 NCQ-scaling is broken for v3 of particles and anti-particles separately for < 39 GeV

V_n (centrality) as a function of beam energy

V_n (centrality) shows the same trend for all energies from RHIC BES1: decreases with harmonic order n.

 V_n shows a monotonic increase with beam energy. The viscous coefficient, which encodes the transport coefficient (η/s), indicates a non-monotonic behavior as a function of beam energy.

STAR data: Anomalies in the Pressure and η/s ?

PRL 112,162301(2014)

PRL 116, 112302 (2016)

Region of interest $\sqrt{s_{NN}} \lesssim 20$ GeV, however, is complicated by a changing B/M ratio, baryon transport dynamics, longer nuclear ₃₀ passing times, etc. Requires concerted modeling effort.

Elliptic Flow at AGS, SIS: from in-plane to out-of-plane (1)

Volume 83, Number 7

PHYSICAL REVIEW LETTERS

16 August 1999

Elliptic Flow: Transition from Out-of-Plane to In-Plane Emission in Au + Au Collisions

FIG. 2. Azimuthal distributions (with respect to the reconstructed reaction plane) for 2A, 4A, 6A, and 8A GeV Au + Au.


```
Passage time: 2R/(\beta_{cm}\gamma_{cm})
Expansion time: R/c_s
c_s=c\sqrt{dp/d\epsilon} - speed of sound
```


v_n Flow at AGS, SIS: from in-plane to out-of-plane (3)

E895: for protons V2 changes sign at Elab=4 GeV. What about the other particle species? Other harmonics? Questions for STAR BES2, BM@N, CBM, NICA

v₂ Flow at SIS-AGS: scaling relations

FOPI: v₂ of protons from *Elab=0.09 to 1.49 GeV* Phys.Lett. B612 (2005) 173-180

Pt dependence of v2 of protons revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies: 0.4 -2AGeV ₃₃

Flow at SIS: rapidity dependence of v2 and EOS

HM – stiff momentum dependent with K=376 MeV SM – soft momentum dependent with K=200 MeV FOPI data : Nucl. Phys. A 876 (2012) 1 IQMD : Nucl Phys. A 945 (2016)

V2n=|V20|+|V22| Fit: V2(y0)=V20+V22*Y0^2

HADES preliminary QM2018

Are flow measurements at RHIC reliable?

Do we understand the difference in v2 and v3 measurements between STAR and PHENIX ?

Are flow measurements at SPS reliable?

PHENIX: RHIC/SPS: ~ 50% difference . STAR: RHIC/SPS ~ 10-15% difference in the differential flow results ! 37

Flow performance: v_n of charged hadrons: MPD (NICA)

19/09/2018 **Performance of Anisotropic Flow Studies at MPD (NICA) 20'** 15-50:16-10 Speaker Mr. Peter Parfenov (MEPhI, Moscow)

Flow performance study for FHCAL TDR (2016 -)

Technical Design Report for the MPD Experiment

Forward Hadron Calorimeter (FHCal)

December 2016

http://mpd.jinr.ru/doc/mpd-tdr/

FHCal coverage: 2.2<|η|< 4.8

Thank you for your attention

MEPhl Relativistic Heavy-Ion Group

One of the youngest group in MEPhI. Est. in 2015

http://foswiki.oris.mephi.ru/

RHIC Geometry Scan

PRL 113, 112301 (2014)

PHYSICAL REVIEW LETTERS

week ending 12 SEPTEMBER 2014

Exploiting Intrinsic Triangular Geometry in Relativistic ³He + Au Collisions to Disentangle Medium Properties

J. L. Nagle,^{1,*} A. Adare,¹ S. Beckman,¹ T. Koblesky,¹ J. Orjuela Koop,¹ D. McGlinchey,¹ P. Romatschke,¹ J. Carlson,² J. E. Lynn,² and M. McCumber²

Acoustic Scaling – System size

Eccentricity change <u>alone</u> is not sufficient

- Characteristic 1/(RT) viscous damping validated
- \succ Similar slopes imply similar $\frac{\eta}{s}$.
- > Important constraint for $\eta/s \& \zeta/s$