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Almost all theoretical approaches operate the relativistic
invariant Mandelstam variables s, t, u to analyze the hadron
inclusive spectra in the mid-rapidity region.

However, there is another approach to analyze multiple hadron
production in hh and AA collisions at high energies, which
operates the four velocities of the initial and final particles.

It is the so called the self-similarity approach, which
demonstrates a similarity of inclusive spectra of hadrons
produced in pp and AA collisions, as a function of similarity
parameter .

1. Introduction
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In the present work we have used an approach

based on the law of similarity.

For example, when planning large expensive

hydraulic structures it is necessary to carry out

physical modeling. Geometrically, the body of
model is made similarly to the nature-body.
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As the main parameters of the problem we take the following:

l – the characteristic size of the body model, l0 is the size of the

nature body, l0/ l is the coefficient of geometric similarity, and U

is the velocity of the impinging flow, μ is the viscosity of the

fluid, ρ is the fluid density.

These parameters define the system of units: l – length, M –

mass, T – time, and have the following dimensions:

[l] = L, [U] = L∙T -1, [µ] = M∙L-1∙T, [ρ] = M∙L-3.

From the defining parameters we can be construct only one

dynamic similarity parameter (a dimensionless combination,

independent of the choice of measuring units):

П = ρUl/μ = Re.

This invariant is called the Reynolds number. To provide the

similarity it is required to have equality of this parameter for the

model and nature.



2. The parameter of self-similarity

Let us briefly present here the main idea of this study. Consider, for
example, the production of hadrons 1, 2, etc. in the collision of a nucleus A
with a nucleus B:

A + B → 1 + 2 + . . .

According to this assumption more than one nucleon in the nucleus A
can participate in the interaction. The value of NA is the effective number of
nucleons inside the nucleus A, participating in the interaction which is
called the cumulative number.

Its values lie in the region of 0 ≤ NA ≤ AA (AA - atomic number of
nucleus A). The cumulative area complies with NA > 1.

Of course, the same situation will be for the nucleus B, and one can
enter the cumulative number of NB .
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For reaction with the production of the inclusive particle 1 we can write 
the conservation law of four-momentum in the following form:

(NAPA + NBPB − p1)2 = (NAm0 + NBm0 +M)2

where NA and NB the number of nucleons involved in the interaction or 
the fraction of four momenta transmitted by the nucleus A and the 
nucleus B; PA , PB , p1 are four momenta of the nuclei A and B and particle 
1, respectively; m0 is the mass of the nucleon; M is the mass of the 
particle providing the conservation of the baryon number, strangeness, 
and other quantum numbers.
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A + B → 1 + …

For π mesons m1 = mπ and M = 0.

For antinuclei and K- mesons M = m1.

For nuclear fragments M = - m1.

For K+ mesons m1 = mK and M = mΛ– mK, mΛ is the mass of the Λ barion.



In A. M. Baldin, A. A. Baldin. Phys. Particles and Nuclei, 29 (3), (1998)
232 the parameter of self-similarity is introduced, which allows one to
describe the differential cross section of the yield of a large class of
particles in relativistic nuclear collisions:

where uA and uB are four velocities of the nuclei A and B. 
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Then the inclusive spectrum of the produced particle 1 in AA collision
can be presented as the universal function dependent of the self-
similarity parameter:

where α(NA) = 1/3 + NA/3,
α(NB) = 1/3 + NB/3,
C1 = 1.9 · 104mb · GeV −2 · c3 · st−1

C2 = 0.125 ± 0.002.
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3. Analytical solution for self-similarity parameter*

*) Baldin A.M., Malakhov A.I. JINR Rapid Communications, No.1(87)-98, 

1998, pp.5-12.

Equation (2) can be written as follows:
NA·NB - ФA·NA - ФB·NB = ФМ ,                                           (3)

Where relativistic invariant dimensionless values have been introduced:

ФA = [(m1/m0)·(uAu1) + M/m0]/[(uAuB) – 1]
ФB = [(m1/m0)·(uBu1) + M/m0]/[(uAuB) – 1]
ФМ = (M2 – m1

2)/[2m0
2((uAuB) – 1)].

Equation (3) can be written as follows:

[(NA/ФB) – 1]·[(NB/ФA) – 1] = 1 + [ФМ/(ФA·ФB)].                        (4)

(NAPA + NBPB − p1)2 = (NAm0 + NBm0 +M)2 (2)

A + B → 1 + …                                                    (1)
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Minimum П is found from the following:

dП/dNA = 0     и   dП/dNB = 0.  (5)

Let us introduce the intermediate variables:

FA = [(NA/ФB)  - 1],          FB = [(NB/ФA)  - 1].  

From the above we obtain:      FA· FB = 1 + ФМ/(ФA·ФB).

Then (5) is also equal to 0 as
dП/dFA = 0   dП/dFB = 0.   
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From

we can obtain:  
4П2 = NA

2 + NB
2 + 2NA· NB·(uAuB),

4П2 = (FA + 1)2ФB
2 + (FB + 1)2ФA

2 + 2 ФA·ФB(FA + 1)·(FB + 1)·(uAuB),
FB = α/FA

The condition of the minimum d(4П2)/dFA = 0 gives the equation for FA:

FA
4 + FA

3 – (ФA/ФB)2·(α2 + αFA) + (uAuB)·( ФA/ФB)·(FA
3 – αFA) = 0

or

FA
4 + FA

3[1 + (uAuB)/z] – (α/z)·FA·[(uAuB) + (1/z)] – α2/z2  = 0,

where z = ФB/ФA.
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When changing A to B:  z → (1/z),  FI → (α/FB).

(α/FB)4 + (α/FB)3[1 + (uAuB)z] – αz(α/FB)[ (uAuB) + z] – α2z2 = 0

or
FB

4 + FB
3[1 + (uAuB)z] – zα·FB·[z + (uAuB)] – α2z = 0.

Previously, we derived a formula for FA :

FA
4 + FA

3[1 + (uAuB)/z] – (α/z)·FA·[(uAuB) + (1/z)] – α2/z2  = 0,

Thus, at z = 1 → FA = FB,  ФA =  ФB = Ф.

But since FA = FB, then (NA/ Ф – 1) = (NB/ Ф – 1) and NA = NB.

F2 = α  and  FA = FB = α½ = [1 + (ФM/ Ф2)]½.

NA = NB = N = (1+F)Ф = {1 + [1 + (ФM/ Ф2)]½}Ф.

П = ½ [2N2 + 2N2(uAuB)]½ = (N/√2)[1 + (uAuB)]½ = N·ChY
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(uAuB) = ch2Y,
(uAu1) = (m1t/m1)·ch(-Y-y) = (m1t/m1)·ch(Y+y).
(uBu1) = (m1t/m1)·ch(Y-y).
Here mt is the transverse mass of the particle 1,  m1t = (m1

2 + p1t
2) ½,

Y - rapidity of interacting nuclei, y – rapidity particle 1.

At y = 0 (in central rapidity region) we obtain:

(uAu1) = (uBu1) = (m1t/m1)·chY,      m1t = (m1
2 + p1t

2)½

Ф = (1/m0)·(m1tchY + M)·[1/(2sh2Y)]
ФМ = (М2 – m1

2)/(4m0
2sh2Y)

N = [1 + ((ФМ /Ф2) + 1)½]·[(m1t/m0)chY + (M/m0)]·[1/(2sh2Y)].
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(uAu1) = (m1t/m1)·ch(-Y-y) = (m1t/m1)·ch(Y+y).
(uBu1) = (m1t/m1)·ch(Y-y).

ch(Y+y)  =ch Y·ch y + sh Y·sh y.
(uAu1) = (m1t/m1)·ch(Y+y) = (m1t/m1)·(chY·chy + shY·shy) ≈ (m1t/m1)·[(1+y2)·chY + y·shY]≈
≈ (m1t/m1)·(1+y2)·chY
ey ≈ 1+ y + y2/2
e-y ≈ 1 – y + y2/2
sh y = ½(ey – e-y) ≈ ½(1+ y + y2/2 - 1 + y - y2/2) = y
ch y = ½(ey + e-y) ≈ ½(1 + y + y2/2 + 1 – y + y2/2) = 1+ y2

(uBu1) = (m1t/m1)·ch(Y-y) = (m1t/m1)·(chY·chy - shY·shy) ≈ (m1t/m1)·[(1+y2)·chY - y·shY] ≈
≈ (m1t/m1)·(1+y2)·chY

(uAu1) ≈ (uBu1) ≈ (m1t/m1)·(1+y2)·chY

Ф = ФA = ФB = [(m1/m0)·(uAu1) + M/m0]/[(uAuB) – 1] ≈
≈ [(m1/m0)·(m1t/m1)·(1+y2)·chY+ M/m0]/[ch2Y– 1] = 
= {(1/m0)[m1t·(1+y2)·chY + M]}·[1/(2sh2Y)]

ФМ = (М2 – m1
2)/(4m0

2sh2Y)
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П = N·chY

N = {1 + [1 + (ФM/ Ф2)]½}Ф

Ф ≈ {(1/m0)[m1t·(1+y2)·chY + M]}·[1/(2sh2Y)]

ФМ = (М2 – m1
2)/(4m0

2sh2Y)

y << 1
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(uAu1) = (PA/mA)(P1/m1) = EA·E1/mI·m1 – pA·p1/mA·m1 =

= mA·chY·m1t·chy/mA·m1 +mA·shY·m1t·shy/mA·m1 =

= (m1t/m1)·(chY·chy+shY·shy) = (m1t/m1)·ch(Y+y).

Since this equation does not depend on mA, it is valid for 
any hadrons and nuclei, for example, for π mesons.

Therefore, we conclude that our approach also works for 
projectile  π mesons.



4. Self-similarity parameter in the central rapidity region

In the mid-rapidity region (y=0, y is the rapidity of particle 1) the analytical 
form for П was found in A. M. Baldin, A. I. Malakhov. JINR Rapid 
Communications, 1 [87]-98 (1998) 5-12. 

In this case NI and NII are equal to each other: NI = NII = N.

N = [1 + (1 +Фδ /Ф2)1/2]Ф,

where
Ф = (m1t chY +M)/(2m0sh2Y), 
Фδ = (M2 − m2

1)/(4m2
0· sh2Y ).

Here m1t is the transverse mass of the particle 1, m1t = (m2
1+p2)1/2, Y - rapidity

of interacting nuclei.
And then

П = N · chY.
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For baryons we have

Пb = (m1tchY − m1)chY/(m0sh2Y) 

and for antibaryons

Пa = (m1tchY + m1)chY/(m0sh2Y).

The results of calculations for the ratio of the antiproton 
cross section to the proton one after integration of over 
dm1t are presented in the following figure.
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Fig.1. The dependence of ratio of the antiproton cross section to the proton one 
as a function of initial rapidity Y or energy (√S, GeV) of the interacting nuclei. The 
points are the experimental data.
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G. Lykasov will tell about the results obtained 
in the framework of our approach in the next 
report in more detail. 
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5. Conclusion

1. The inclusive spectra of the produced hadrons in hadron-hadron
and nuclear-nuclear collisions can be presented as the universal
function dependent of the self-similarity parameter in analytical form.

2. The experimental data are in good agreement with results our
calculations in a wide energy range from a few GeV to a few TeV in
central rapidity region.

3. The use of the self-similarity approach allows us to describe the ratio
of the total yields of particles to antiparticles produced in A-A
collisions as a function of the energy in the mid-rapidity region and a
wide energy range.

4. A description of the self-similarity parameter depending on the
rapidity in the mid-rapidity region is obtained.
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Thank you for your attention!


