$\pi J/\psi - D\bar{D}^*$ potential described by the quark exchange diagram

Yasuhiro Yamaguchi 1

in collaboration with

Yukihiro Abe², Kenji Fukukawa³, Atsushi Hosaka²

¹RIKEN, Japan ²RCNP, Osaka Univ., Japan ³Suma Gakuen junior and senior high school, Japan

XXIV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics"

Outline

- Introduction
 - Exotic hadrons
 - Z_c(3900)
- Interaction model
 - Meson exchange model
 - Quark exchange model
- Summary

) *	
Q 4 -		$ar{D}$
	\overline{Q}^{q}	

Exotic	hadron

Description of Hadron structure Introduction

19 Sep. 2018

• Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

• Exotic Hadrons ($\neq qqq, q\bar{q}$): Multiquark? Multihadron?

Many exotic candidate!! Many models!! Introduction

T. Hyodo, D. Jido, PPNP67(2012)55, N. Brambilla et al., Eur. Phys. J.C (2011)71, 1534

H.X.Chen, et al	., Phys.Rept. 639 (2016)1,	◆□▶ ◆圖▶ ◆厘▶ ◆厘▶	1	500
19 Sep. 2018	Yasuhiro Yamaguchi(RIKEN)	Baldin ISHEPP XXIV@JINR		3

Charged Charmonium: $Z_c(3900)$

Introduction

- Charged Charmonium??
- $Y(4260) \to Z_c(3900)\pi \to J/\psi\pi\pi$

< □ > <

Charged Charmonium: $Z_c(3900)$

Introduction

- Charged Charmonium??
- $Y(4260) \rightarrow Z_c(3900)\pi \rightarrow J/\psi\pi\pi$

▷ Ordinal Charmonium $c\bar{c}$: no electric charge. $\Rightarrow Z_c^+(3900)$: Genuine Exotic State!? $c\bar{c}u\bar{d}$

3 x 3

3. 3

- Exotic state may be a loosely bound state (resonance) of the meson-meson.
 - \Rightarrow Analogous to atomic nuclei (Deuteron: $B \sim 2.2 \text{ MeV}$)

• Exotic state may be a loosely bound state (resonance) of the meson-meson.

 \Rightarrow Analogous to atomic nuclei (Deuteron: $B \sim 2.2$ MeV)

• $D\bar{D}^*$ molecule? π exchange by $D\bar{D}^* - D^*\bar{D}^*$ (Heavy quark spin symmetry)

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

- Lattice QCD simulation by HALQCD at $m_{\pi} = 410 700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c D\bar{D}^*$

・ 同 ト ・ ヨ ト ・ ヨ ト

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

- Lattice QCD simulation by HALQCD at $m_{\pi}=410-700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c D\bar{D}^*$

Ikeda, et al., PRL117(2016)242001

- 同 ト - ヨ ト - - ヨ ト

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

• Lattice QCD simulation by HALQCD at $m_{\pi} = 410 - 700$ MeV \Rightarrow Coupled-channel $\pi J/\psi - \rho \eta_c - D\bar{D}^*$

Ikeda, et al., PRL117(2016)242001

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

Exotic structure: Bound state? Cusp?

글 > - < 글 >

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

Exotic structure: Bound state? Cusp?

Hadron-hadron interaction

• Hadron-hadron interaction is important to understand the nature of exotic states! not only Z_c but also others.

A 10

- 4 E K 4 E K

Model of Hadron-hadron interaction

• Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry $(0^- - 1^- \text{ mixing})$

白 ト イヨ ト イヨ ト

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry (0⁻ - 1⁻ mixing)
- Short-range force: Charm (c) exchange
- ▷ How can we understand strong $\pi J/\psi D\bar{D}^*$ potential?

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry (0⁻ - 1⁻ mixing)
- Short-range force: Charm (c) exchange
- ▷ How can we understand strong $\pi J/\psi D\bar{D}^*$ potential?

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP)

 $DD^*\pi$ vertex induces OPEP ($DD\pi$ vertex violates the parity conservation)

$$\underbrace{\mathsf{OPEP}}_{V^{\pi}} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^2 \left[\vec{S}_1 \cdot \vec{S}_2 C(r) + S_{12}(\hat{r}) T(r) \right] \vec{\tau}_1 \cdot \vec{\tau}_2$$
$$C(r) = m_{\pi}^2 \left(\frac{e^{-m_{\pi}r}}{r} - \frac{e^{-\Lambda r}}{r} - \frac{\Lambda^2 - m_{\pi}^2}{2\Lambda} e^{-\Lambda r} \right)$$

Comments

• HQS induces $D(0^-) - D^*(1^-)$ coupling \rightarrow OPEP works!

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP) with Tensor force!

 $DD^*\pi$ vertex induces OPEP ($DD\pi$ vertex violates the parity conservation)

$$OPEP$$

$$V^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^2 \left[\vec{S}_1 \cdot \vec{S}_2 C(r) + \mathbf{S_{12}}(\hat{\mathbf{r}}) \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_1 \cdot \vec{\tau}_2$$

$$C(r) = m_{\pi}^2 \left(\frac{e^{-m_{\pi}r}}{r} - \frac{e^{-\Lambda r}}{r} - \frac{\Lambda^2 - m_{\pi}^2}{2\Lambda} e^{-\Lambda r} \right)$$

Comments

• HQS induces $D(0^-) - D^*(1^-)$ coupling \rightarrow OPEP works!

• Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S_1} \cdot \hat{r})(\vec{S_2} \cdot \hat{r}) - \vec{S_1} \cdot \vec{S_2} \rightarrow S-D$ mixing

Heavy meson exchange potential Meson exchange model

• $D^{(*)}$ meson exchange potential in $\pi J/\psi - D^{(*)}\bar{D}^{(*)}$

$$\underbrace{D \text{ exchange}}_{V^{D} = \frac{2}{3} \frac{g_{\psi}g_{\pi}}{f_{\pi}\sqrt{E_{\pi}}} \left[\vec{S}_{1} \cdot \vec{S}_{2}C(r) + S_{12}(\hat{r})T(r)\right]} \\
\underbrace{D^{*} \text{ exchange}}_{V^{D^{*}} = \frac{2}{3} \frac{g_{\psi}g_{\pi}}{f_{\pi}\sqrt{E_{\pi}}} \left[2\vec{S}_{1} \cdot \vec{S}_{2}C(r) - S_{12}(\hat{r})T(r)\right]} \\
g_{\psi} = 8$$

A. Deandrea, G. Nardulli and A. D. Polosa, PRD68(2003)034002

Comments

- $D^{(*)}$ meson exchange gives the $\pi J/\psi D^{(*)}\bar{D}^{(*)}$ potential. Hidden \leftrightarrow Open-Open
- $D^{(*)}$ mass $\sim 2 \text{ GeV} \Leftrightarrow 1/m_{D^{(*)}} \sim 0.1 \text{ fm}$ Does it work?

Numerical results: Phase shift

Meson exchange model

• We found...

同 ト イヨ ト イヨト

э

Numerical results: Phase shift

Meson exchange model

 We found... No Bound state, No Resonance Very Small phse shift |δ| < 0.09 [rad]

• $D^{(*)}\bar{D}^{(*)}$ channel: **Small** contribution from OPEP

• $\pi J/\psi$ channel: $D^{(*)}$ exchange is Negligible

A 10

Numerical results: Phase shift

Meson exchange model

• We found... No Bound state, No Resonance Very Small phse shift $|\delta| < 0.09$ [rad]

- $D^{(*)}\overline{D}^{(*)}$ channel: Small contribution from OPEP Why?: Isospin factor $\vec{\tau}_1 \cdot \vec{\tau}_2$, -3 (I = 0), but Z_c :+1 (I = 1)
- πJ/ψ channel: D^(*) exchange is Negligible
 Why?: Suppression by the form factor (finite hadron size)

(4月) (4日) (4日)

D meson exchange \rightarrow Quark exchange Meson exchange model

- No resonance \leftarrow agreeing with Lattice QCD result
- \Leftrightarrow We cannot explain the strong $\pi J/\psi D\bar{D}^*$ potential.

D meson exchange \rightarrow Quark exchange Meson exchange model

- No resonance \leftarrow agreeing with Lattice QCD result
- \Leftrightarrow We cannot explain the strong $\pi J/\psi D\bar{D}^*$ potential.

Problems in $D^{(*)}$ exchange potential

- Too large mass, $1/m_{D^{(*)}} \sim 0.1~{
 m fm}$
- In such short range region, "Hadron" is not good effective d.o.f. ?

↓ Quark exchange interaction! →next section

Born-order quark-exchange diagram

T. Barnes and E. S. Swanson, PRD46(1992)131. Swanson, Ann. Phys. 220(1992)73.

• $AB \rightarrow CD$ scattering $\mathcal{M}_{fi} \propto \langle C, D | H_I | A, B \rangle$

Ingredients: Meson Wavefunctions(A, B, C, D)
 Quark interaction (Quark Model)

Born amplitude ⇒ Meson-meson Potential can be obtained

▶ ★ 문 ▶ ★ 문 ▶

Scattering Amplitude

Quark exchange interaction

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

 $\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$

Scattering Amplitude

Quark exchange interaction

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

$$\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$$

• Potentials (momentum space) **Coulomb:** $V^{Coul}(q) = -\frac{\alpha_s}{2\pi^2} \frac{1}{\vec{q}^2}$, **Hyperfine:** $V^{Hyp}(q) = -\frac{8\pi\alpha_h}{3m_im_j}e^{-\vec{q}^2/4\sigma^2}$ Linear (Regularized):

Cross Section: Quark exchange vs $D^{(*)}$ exchange Quark exchange interaction

- Comparing results of Quark exchange and $D^{(*)}$ exchange
- Can you see a dashed line $(D^{(*)} \text{ exchange})$?

Cross Section: Quark exchange vs $D^{(*)}$ exchange Quark exchange interaction

- Comparing results of Quark exchange and $D^{(*)}$ exchange
- Can you see a dashed line ($D^{(*)}$ exchange)? < 3.5×10^{-8} mb
- Large difference between Quark exchange and $D^{(*)}$ exchange!

Summary

- Many exotic states near the threshold.
 - \rightarrow Understanding the hadron-hadron interaction is needed.
- Charged charmonium $Z_c(3900)$ has been discussed as the Hadronic molecules or the threshold cusp.
- OPEP contribution is not strong. $D^{(*)}$ meson exchange is **negligible**.
- Quark exchange interaction is introduced as Short range $\pi J/\psi D^{(*)}D^{(*)}$ potential.

We find Large difference between results from Quark exchange and $D^{(*)}$ meson exchange.

- Beyond Born-order \rightarrow T = V + VGT
 - \Rightarrow To compare the Lattice result
- Introducing $\rho\eta_c$, $\psi'\pi$,...
- Bottom Sector: $Z_b(10610)$ and $Z_b(10650) \Rightarrow \pi \Upsilon B\bar{B}^*$

Thank you for your kind attention.

・ 同 ト ・ ヨ ト ・ ヨ ト

Back Up

・日・ ・日・

문 🛌 문

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP)

$$\begin{array}{c} \overline{D}^{*} \\ \Gamma_{1} \\ \overline{D} \\ \overline{D} \end{array} \begin{array}{c} D \\ \Gamma_{2} \\ \overline{D} \end{array} \begin{array}{c} D \\ \Gamma_{2} \\ D^{*} \end{array} \begin{array}{c} OPEP \\ V^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}}\right)^{2} \left[\vec{S}_{1} \cdot \vec{S}_{2}C(r) + S_{12}(\hat{r})T(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ \hline Vector (\rho, \omega) exchange \\ V^{\nu} = -\left(\frac{\lambda g_{\nu}}{\sqrt{3}}\right)^{2} \left[2\vec{S}_{1} \cdot \vec{S}_{2}C(r) - S_{12}(\hat{r})T(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \end{array}$$

Comments

• Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S_1} \cdot \hat{r})(\vec{S_2} \cdot \hat{r}) - \vec{S_1} \cdot \vec{S_2} \rightarrow S-D$ mixing

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP) with Tensor force!

$$\begin{array}{c} \overline{D}^{*} \\ \Gamma_{1} \\ \overline{D} \\ \overline{D} \end{array} \xrightarrow{D} \begin{array}{c} D \\ \Gamma_{2} \\ \overline{D} \end{array} \xrightarrow{D} \begin{array}{c} O \\ \Gamma_{2} \\ D^{*} \end{array} \xrightarrow{D} \begin{array}{c} O \\ \Gamma_{2} \\ V^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^{2} \left[\vec{S}_{1} \cdot \vec{S}_{2} C(r) + \mathbf{S}_{12}(\hat{\mathbf{r}}) \mathbf{T}(r) \right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ \hline V \text{ector } (\rho, \omega) \text{ exchange} \\ V^{\nu} = - \left(\frac{\lambda g_{\nu}}{\sqrt{3}} \right)^{2} \left[2\vec{S}_{1} \cdot \vec{S}_{2} C(r) - \mathbf{S}_{12}(\hat{\mathbf{r}}) \mathbf{T}(r) \right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \end{array}$$

Comments

- Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r}) \vec{S}_1 \cdot \vec{S}_2 \rightarrow S-D$ mixing
- G-parity of vector mesons: ρ (G = −1), ω (G = +1)
 ⇒ Working against each other, ρ + ω has a minor role...

• Meson-meson thresholds,

э

∃ ► < ∃ ►</p>

A ►

• Meson-meson thresholds, $\pi J/\psi, \rho\eta_c, \pi\psi(2S), D\bar{D}^*, D^*\bar{D}^*, ...$

Coupled-Channels

$$\left\{ \begin{array}{c} \pi J/\psi \\ \pi \psi(2S) \\ \rho \eta_c \\ D \bar{D}^* \\ D^* \bar{D}^* \\ \vdots \end{array} \right\} - \left\{ \begin{array}{c} \pi J/\psi \\ \pi \psi(2S) \\ \rho \eta_c \\ D \bar{D}^* \\ D^* \bar{D}^* \\ D^* \bar{D}^* \\ \vdots \end{array} \right\}$$

• Meson-meson thresholds, $\pi J/\psi$, $\rho\eta_c$, $\pi\psi(2S)$, $D\bar{D}^*$, $D^*\bar{D}^*$, ...

- Born-order quark-exchange
 - \Rightarrow Applicable to charm exchange (Hidden \leftrightarrow Open-Open)

• Meson-meson thresholds, $\pi J/\psi$, $\rho\eta_c$, $\pi\psi(2S)$, $D\bar{D}^*$, $D^*\bar{D}^*$, ...

• <u>Born-order</u> quark-exchange \Rightarrow Applicable to charm exchange (Hidden \leftrightarrow Open-Open) Today: $\pi J/\psi - D\bar{D}^*$ and $\pi J/\psi - D^*\bar{D}^*$ (S-wave) • Quark Hamiltonian (One gluon exchange + Linear potentials)

Barnes and Swanson, PRD46(1992)131.; Swanson, Ann. Phys. 220(1992)73.

$$H_{ij}^{q} = K_{q} + \left(-\frac{3}{4}br + \frac{\alpha_{s}}{r} - C\right)\vec{F}_{i}\cdot\vec{F}_{j}$$
$$-\frac{8\pi\alpha_{h}}{3m_{i}m_{j}}\left(\frac{\sigma^{3}}{\pi^{3/2}}e^{-\sigma^{2}r_{ij}^{2}}\right)\vec{S}_{i}\cdot\vec{S}_{j}\vec{F}_{i}\cdot\vec{F}_{j}$$

> Parameters are fixed to reproduce the mass of mesons

Table: Quark Model Parameters from Ann.Phys.220(1992)73.

$m_q = 0.375 { m GeV}$	$m_c = 1.9 \mathrm{GeV}$	
$\alpha_{s} = 0.857$	$\alpha_{h} = 0.840$	
$b = 0.154 \text{ GeV}^{-2}$	$C = -0.4358 { m GeV}$	
$\sigma=$ 0.70 GeV		

Scattering Amplitude Model Setup

B

• Born quark exchange diagrams T. Barnes and E. S. Swanson, PRD46, 131 (1992). Quark interaction between Mesons \Rightarrow Four diagrams

• Scattering Amplitude $\mathcal{M}_{\textit{fi}} \propto \langle C, D | H^q | A, B
angle$

 $\mathcal{M}_{\textit{fi}}^{\textit{tot}} = \mathcal{M}_{\textit{fi}}^{\textit{capture1}} + \mathcal{M}_{\textit{fi}}^{\textit{capture2}} + \mathcal{M}_{\textit{fi}}^{\textit{transfer1}} + \mathcal{M}_{\textit{fi}}^{\textit{transfer2}} + \mathcal{M}_{\textit{fi}}$

D = B

D