

Spin Dynamics for EDM at Storage Rings

<u>N. Nikolaev</u> Landau ITP, Chernogolovka & MIPT, Dolgoprudny

XXIV Baldin Seminar, 17-22 September 2018

Outlook: selected issues from JEDI driven activity at COSY (a task for future SPD at NICA?)

- EDM: why? Fundamental symmetries and baryogenesis
- EDM: how? Spin rotation by electric fields
- JEDI@COSY: selected record setting results
- Systematic background from MDM in imperfection magnetic rings is an evil
- JEDI@COSY: spintune mapping as a tool to quantify imperfection fields
- Impact of synchrotron oscillations on spin coherence time: nonexponential decay of polarization and spin echo
- Gravity induced spin rotation as a false EDM signal: de Siitter (1916!) spin-orbit interaction and imperfection fields from focusing to compensate for the free fall

http://collaborations.fz-juelich.de/ikp/jedi/documents/colpapers.shtml

Why: EDM and baryogenesis

 Sakharov (1967): CP violation is imperative for baryogenesis in the Big Bang Cosmology

	observed	SM prediction
$rac{n_B-n_{\overline{B}}}{n_{\gamma}}$	$(6.1 \pm 0.3) \times 10^{-10}$	10 ⁻¹⁸
neutron EDM limit (<i>e · cm</i>)	3×10^{-26}	10 ⁻³¹

- EDM as a high-precision window at physics Beyond Standard Model
- nEDM: plans to increase sensitivity by 1-2 orders in magnitude
- pEDM: statistical accuracy of 10^{-29} is aimed at dedicated all-electric storage rings
- dEDM and pEDM in precursor experiment at COSY: dEDM $\sim 10^{-20}$ is within reach?
- Sequel to JEDI: CPEDM & prototype pure electric ring (at CERN? at COSY?...) --- big international effort, CDR under preparation for the fall 2018
- SM can not be a final truth: talk by Vadim Alexakhin at this meeting

EDM vs. MDM (learnt from Lev Okun in 60's)

- MDM: allowed by all symmetries, a scale is set by a nuclear magneton μ_N
- Buy CPT: EDM is P and CP/T forbidden
- Price for the PV: 10^{-7} , for CPV extra 10^{-3} from K-decays
- Natural scale $d_N = \mu_N \times 10^{-7} \times 10^{-3} \sim 10^{-24} e \cdot cm$
- The SM: CPV linked to the flavor change. Pay 10^{-7} more to neutralize the flavor change

$$d_{N,SM} \sim \mu_N \times 10^{-7} \times 10^{-3} \times 10^{-7} \sim 10^{-31} e \cdot cm$$

Why charged particles besides neutrons?

- Neutrons are record holders: next generation expts in the pipeline wherever ultracold neutrons are available (PNPI, Grenoble, Oak Ridge, PSI, Triumf,...)
- Isotopic properties of CP violation Beyond the Standard Model are entirely unknown: $d_p \gg d_n$ is not excluded
- Even with CP violation from isoscalar QCD θ -term the theory predicts $d_p \neq d_n$
- (e.g. Bonn-Juelich Collab.)
- Deuteron: besides d_p and d_n the deuteron d_d may receive new contributions from T- and CP –violating np-interaction --- basically an open issue
- The same is true for helium-3 and other nuclei

A principle of EDM measurement: spin rotation by FORSCHUNGSZENTRUM EDM-interaction with E-fields

• FT-BMT eqn :

•
$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S}(t) = -\frac{q}{m} \left(G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right)\vec{\beta} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{\beta} \times \vec{B}) \right) \times \vec{S}(t)$$

$$MDM$$

$$EDM \quad d = \frac{\eta\hbar q}{2mc}$$

All-electric ring is ideal for protons (Yu Orlov et al, srEDM at BNL)

Ideal experimental setup

- Ideal storage ring (alignment, stability, field homogeneity, no systematics)
- high intensity beams ($N = 4 \times 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (*E* = 10 MV/m)
- long spin coherence time ($\tau = 1000 \text{ s}$)
- polarimetry (analyzing power A = 0.6, f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

JEDI: EDM searches at COSY Precursor experiment in the pipeline

- COSY is all-magnetic storage ring, unique for studying spin dynamics but still needs upgrades for EDM searches
- Statistical accuracy for $d_d = 10^{-24} e \cdot cm$ is reachable at COSY
- Systematic effects: horizontal imperfection magnetic fields are evil because MDM >> EDM and MDM rotations give false EDM signal
- JEDI experimental studies of imperfections: MDM background can be suppressed to 10^{-6} level. Further suppression of systematics is possible
- COSY as is: EDM $\leq 10^{-6}$ MDM $\cong 10^{-20} e \cdot cm$

Till NICA we rely on COSY as a Testing Ground

JEDI at COSY: record spin tune precision

Continuous polarimetry of in-plane spin precession with time stamp

JEDI: PRL 115, 094801 (2015); PRL, 119, 014801 (2017); PRST AB 21, 042002 (2018)

Spin coherence time

• Long spin coherence is crucial for high sensitivity to EDM signal

Inititally all spins aligned

Spins decohered - polarization vanishes

- Prerequisites for long SCT:
- use bunched beam
- decrease beam emittance via electron-cooling
- **Betatron oscillations**: fine-tune sextupole families to suppress chromaticity (old idea by Ivan Koop and Yuri Shatunov (1988))

JEDI: record spin coherence time

- From 2017 on JEDI routinely runs at COSY with SCT of more than 1000 s
- JEDI: PRL 117, 054801 (2016) PR AB 21, 024201 (2018);

EDM effect

- RF Wien-Filter entails a vanishing EDM term in the FT-BMT
- Still EDM enters via tilt of the stable spin axis \vec{c}

$$\vec{c} = \vec{e}_x \sin \xi_{\text{EDM}} + \vec{e}_y \cos \xi_{\text{EDM}}$$

 $\tan \xi_{\text{EDM}} = \frac{\eta \beta}{2G}$

• RF WF with upright B-field and spin kick χ_{WF} still rotates spin with resonance tune (Morse et al. PRSTAB 16 (2013)114001, NNN (2013) unpublished)

$$\epsilon_{\rm EDM} = \frac{1}{4\pi} \chi_{\rm WF} \sin \xi_{\rm EDM}$$

• EDM from either stable spin axis or resonance tune?

EDM effect

• A pitfall: false EDM signal from MDM rotation in imperfection magnetic fields

$$\sin \xi_{\text{EDM}}] \vec{e}_x \to c_y \vec{e}_y + [c_x(\text{MDM}) + \sin \xi_{\text{EDM}}] \vec{e}_x + c_z(\text{MDM}) \vec{e}_z$$
$$\epsilon_0 = \frac{1}{4\pi} \chi_{\text{WF}} | \vec{c} \times \vec{w} |$$

 \vec{w} is a WF magnetic field axis

- Spin tune depends on the imperfection fields
- Spin tune mapping: convert a record precision of spin tune to a tool to determine imperfections c_{x,z}.
- Probe imperfection complementing a ring with artificial in-plane magnetic fields
- Realized experimentally: JEDI: Phys.Rev. AB 20, 072801 (2017)

JEDI: spin tune mapping evaluation of imperfection magnetic fields at COSY

- Two cooler solenoids as spin rotators to generate artificial imperfection fields
- Measure spin tune shift vs solenoid spin kicks:

- Position of the saddle point determines a tilt of stable spin axis by magnetic imperfections
- Control of MDM background at level $\Delta c = 2.8 \times 10^{-6}$ rad
- Systematics-limited sensitivity $\sigma_{d_d} \approx 10^{-20} e \cdot cm$

• Spin transfer matrix with running RF WF

$$T(n) = \exp[-i\pi\nu_s n(\vec{\sigma}\cdot\vec{c})] \cdot \exp[-i\pi\epsilon_0 n(\vec{\sigma}\cdot\vec{u})]$$

Axis of driven spin rotation (envelope evolution)

$$\vec{u} = \cos \Delta_{WF} \vec{m} + \sin \Delta_{WF} \vec{k}$$

 Δ_{WF} - a phase shift between the spin precession and RF phases

$$\vec{k} = rac{[\vec{c} \times \vec{w}]}{|\vec{c} \times \vec{w}|}, \qquad m = \vec{k} \times \vec{c}$$

Idle precession of driven rotation axis

$$\vec{u}_s(n) = \vec{u}\cos 2\pi\nu_s n + [\vec{c} \times \vec{u}]\sin 2\pi\nu_s n$$

•

- Rotating frame: one component of the initial in-plane polarization participates the RF WF driven spin resonance
- The second component keeps idle precession

Rotating frame

• The initial vertical polarization does not generate the idle precessing component

Synchrotron oscillations

- Synchrotron oscillations: Nikolaev, Saleev, Rathmann, JETP Lett. 106(4), 213-216 (2017
- Spin phase is modulated with two random parameters: amplitude and phase

$$\Delta \theta_s(n) = \psi_s \xi [\cos(2\pi \nu_z n + \lambda) - \cos \lambda]$$

$$\psi_s = \frac{G\gamma\beta^2\sqrt{2}}{\nu_z} \left| \left(\frac{\Delta p}{p}\right)^2 \right|^{1/2}$$

Related modulation of the RF phase (η_{SF} is a slip factor)

$$\Delta \theta_{WF}(n) - \Delta \theta_S(n) = C_{WF} \Delta \theta_S(n)$$

$$C_{WF} = \frac{\nu_{WF} + K}{\nu_s} \cdot \frac{\eta_{SF}}{\beta^2} - 1$$

• Set of decoherence-free magic energies at $C_{WF} = 0$ (Lehrach et al (2012))

Synchrotron oscillations

• Jittering of the driven spin rotation (envelope evoluition) axis vs. phase λ

 $\vec{u}(\lambda) = \vec{u}\cos(y\cos\lambda) - [\vec{c} \times \vec{u}]\sin(y\cos\lambda)$

$$y = C_{WF}\psi_S\xi = y_0\xi$$

- Driven rotation of each individual spin rotation in its own λ -dependent plane.
- Driven resonance tune does not depend on the synchrotron phase λ

$$\epsilon(\xi) = \epsilon J_0(y)$$

• All individual driven rotation planes share the same stable spin axis \vec{c}

• Averaging over synchrotron phase for initial vertical $\vec{S}(0) = \vec{c}$

 $\vec{S}(\vec{c};n) = \cos(2J_0(y)\pi\epsilon_0 n)\vec{c} - J_0(y)\sin(2J_0(y)\pi\epsilon_0 n)[\vec{c}\times\vec{u}_s(n)]$

- The $\cos(2J_0(y)\pi\epsilon_0 n)$ and $\sin(2J_0(y)\pi\epsilon_0 n)$ are spin envelopes from RF driven spin resonance
- Extra suppression by $J_0(y) < 1$ of the in-plane polarization from averaging over ensemble of particle-to-particle jittering rotation planes.
- Spin echo: while the in-plane polarization decoheres, the amplitude of the vertical polarization stays put at unity
- No idle precessing in-plane component is generated from vertical polarization

Synchrotron oscillations

• The initial in-plane polarization $\vec{S}_p(0)$:

 $\vec{S}(\vec{S}_p; n) = J_0(y) \cos \Delta_{WF} \sin(J_0(y)\Phi) \vec{c}$

$$+\frac{1}{2}\cos(J_0(y)\Phi)\left\{\cos\Delta_{WF}\left(1-J_0(2y)\right)\vec{u}_s(n)-\sin\Delta_{WF}\left(1+J_0(2y)\right)[\vec{c}\times\vec{u}_s(n)]\right\}_{driven}$$

$$+\frac{1}{2}\left\{\sin\Delta_{WF}\left(1+J_0(2y)\right)\vec{u}_s(n)-\sin\Delta_{WF}\left(1-J_0(2y)\right)[\vec{c}\times\vec{u}_s(n)]\right\}_{idle}$$

- Reminder of the spin echo: in-plane polarization decoheres stronger than the vertical one
- Driven rotation plane and the idle precession are axis rotated by an angle $\sim\!y^2\tan\Delta_{WF}$

Damping of driven oscillations

One-particle resonance strength

$$\epsilon(\xi) = \epsilon_0 J_0(C_{WF}\psi_s\xi)$$

Spread of driven resonance tunes → decoherence of polarization of an ensemble of particles

$$S_{y} = \Re \langle \exp[-in\epsilon(\xi)] \rangle_{\xi}$$
$$= \Re \left\langle \exp \left\{ -in\epsilon_{0} \left[1 - \frac{1}{4} C_{rf}^{2} \psi_{s}^{2} \xi^{2} \right] \right\} \right\rangle_{\xi}$$
$$= \frac{1}{\sqrt{1 + \rho^{2} n^{2}}} \cos[\epsilon_{0} n - \kappa(n)],$$

Damping parameter

$$\rho = \frac{1}{4} \epsilon_0 C_{WF}^2 \psi_s^2$$

- Phase walk $\kappa(n) = \arctan(\rho n)$

Damping of driven oscillations

 An example of damping of oscillations driven by RF Wien Filter (JEDI, November 2017, very preliminary):

- Exptl confirmation of non-exponential attenuation
- Phase walk is confirmed
- Analysis of much more data is in progress

Detuned driven spin rotations

• The phase of driven spin rotation

$$\epsilon n \Rightarrow \phi = \epsilon_0 \frac{\sin \delta_{WF} n}{\delta_{WF}} \qquad \epsilon(\xi) = \epsilon_0 J_0(C_{WF} \psi_s \xi)$$

Decoherence $S_y = \frac{1}{\sqrt{1 + \Phi^2}} \cos[\phi - \kappa(n)]$ $\kappa(n) = \arctan(\Phi),$ 1

$$\rho n \Rightarrow \Phi = \frac{1}{4} C_{WF}^2 \psi_s^2 \phi$$

• A **spin echo:** at $\phi = \Phi = 0$, i.e., with the period

$$n = \frac{\pi}{\delta_{WF}}$$

spin decoherence and phase walk vanish!

• Similar spin echo in the in-plane polarization (formulas are too lengthy)

,

- Artificially strong detuning for the sake of illustration of the phenomenon
- Variable driven oscillation frequency $\sim \cos \phi$
- Higher harmonics of detuning frequency at work

Spin in curved space-time and gravity induced false EDM effects

- New interest (and much to much noise) inspired by misleading e-prints by T. Morishima et al. PTEP (2018) no.6, 063B07 and references therein
- Promptly refuted by several authors. Good summary in arXiv:1805.01944 [hep-ph] by J. P. Miller and B. Lee Roberts
- My principal task: historical overview and vindication of early results by A. Silenko and O. Teryaev, Phys. Rev. D71 (2005) 064016; Phys.Rev. D76 (2007) 061101;

Y. Orlov Y, E. Flanagan E and Y. Semertzidis. Phys.Lett. A376 (2012) 2822

Spin in curved space-time and gravity induced false EDM effects

The Earth as a laboratory: storage rings rests on the terrestrial surface.

No real need in full complexity of General Relativity: weak field approximation is OK, it suffices to know the free fall acceleration \vec{g}

Two principal effects:

- The spin-orbit interaction in the Earth gravitational field (the de Sitter-Fokker effect, aka the geodetic effect (**1916**, **1921**))
- Focusing EM fields are imperative to impose the closed paricle orbit in a storage ring compensating for the particle weight: Silenko & Teryaev (2005) for magnetic case
- The both effects have similar structure and both produce false EDM signal in frozen spin pure electric ring
- No explicit separation of the two in Orlov et al. (2012)

The spin-orbit interaction

Has been tested experimentally by Gravity Probe B C.W.F Everitt et al. Phys.Rev.Lett. 106 (2011) 221101

De Siiter in relativistic case

The relativistic extension of the spin-orbit interaction result: .

- I.B. Khriplovich, A.A. Pomeransky, J.Exp.Theor.Phys. 86 (1998) 839-849
- A.A. Pomeransky, R.A. Senkov, I.B. Khriplovich, Phys.Usp. 43 (2000) 1055-1066

The precession frequency equals

$$\vec{D}_{LS} = -\frac{2\gamma + 1}{\gamma + 1} [\vec{v} \times \vec{g}]$$

As \vec{g} is normal to the storage ring plane, $\vec{\Omega}_{LS}$ describes spin precession around the radial axis.

The spin is not quite a classical object. Study the Dirac eqn. in a static gravitational field invoking the Foldy-Wouthuysen representation.

Khriplovich-Pomeransky result is fully confirmed (Obukhov, Silenko, Teryaev (2005,2016))

De Siiter in relativistic case

The relativistic extension of the spin-orbit interaction result: .

- I.B. Khriplovich, A.A. Pomeransky, J.Exp.Theor.Phys. 86 (1998) 839-849
- A.A. Pomeransky, R.A. Senkov, I.B. Khriplovich, Phys.Usp. 43 (2000) 1055-1066

The precession frequency equals

$$\vec{D}_{LS} = -\frac{2\gamma + 1}{\gamma + 1} [\vec{v} \times \vec{g}]$$

As \vec{g} is normal to the storage ring plane, $\vec{\Omega}_{LS}$ describes spin precession around the radial axis.

The spin is not quite a classical object. Study the Dirac eqn. in a static gravitational field invoking the Foldy-Wouthhuysen representation.

Khriplovich-Pomeransky result is fully confirmed (Obukhov, Silenko, Teryyaev (2005,2016))

Closed orbit in a storage ring

Gravity force

$$\vec{F}_g = \frac{2\gamma^2 - 1}{\gamma} m\vec{g}$$

displaces the orbit w.r.t. the electromagnetic equilibrium one.

- Never has been of any concern to accelerator builders
- Compensation by radial focusing magnetic field (Silenko, Teryaev (2005))

$$\vec{B}_r = \frac{2\gamma^2 - 1}{\gamma v^2} \cdot \frac{m}{e} \left[\vec{v} \times \vec{g} \right]$$

 Compensation by vertical focusing electric field (Obukhov et al. (2016), can be digged out also from the earlier work by Orlov et al (2012))

$$\vec{E}_{y} = -\frac{2\gamma^{2}-1}{\gamma} \cdot \frac{m}{e} \vec{g}$$

Amounts to the motional **imperfection radial magnetic field** \propto [$\vec{v} \times \vec{g}$]

False EDM from gravity

Gravity acts as an imperfection radial magnetic field.

- Absolute evil in an all electric EDM ring false EDM signal
- Obukhov et al. (2016))

$$\vec{\Omega}_{gE} = \frac{1 - G(2\gamma^2 - 1)}{\gamma c^2} [\vec{v} \times \vec{g}]$$

- Upon the frozen spin constraint $v^2 = \frac{1}{1+G}$ $\vec{\Omega}_{gE} = \frac{g\sqrt{G}}{c}\vec{e}_r$
- First derived by Orlov et al. (2012) by brute force solution of GR equations without explicit separation of the spin-orbit and focusing effects.
- Similar derivation by Laszlo et al. arXiv: 1803.01395 [gr-qc]
- Gravity effect (a) can be cancelled out with counterrotating beams, (b) can be used as a candle to control the systematics

Magic ring for deuterons

New simple result for G < 0: frozen spin with crossed E- and B-fields

• Pure magnetic field (Silenko, Teryaev (2005)

$$\vec{\Omega}_{gM} = -\frac{1}{\gamma v^2} \{1 + G(2\gamma^2 - 1)\} [\vec{v} \times \vec{g}]$$

- Frozen spin condition in the E × B ring $\left[\vec{v} \times \vec{B}_{y}\right] = \frac{1}{G} \{1 - v^{2}(1 + G)\}\vec{E}_{r}$
- Focusing forces are propto a dispacement from the EM equilibrium orbit

$$\kappa = \frac{vB_r}{E_y} \approx const$$

Depends on the ring design

Frequency of gravity induced false EDM signal

$$\vec{\Omega}_g = -\frac{1}{1+\kappa} (\vec{\Omega}_{gE} + \kappa \vec{\Omega}_{gM})$$

The srEDM and JEDI experimental plans have motivated new interesting results on spin dynamics in storage rings (spin tune mapping, RF Wien Filter, nonexponential spin decoherence, spin echo...)

COSY@Juelich is and will remain a unique facility for such studies

Systematic backgrounds from ring imperfection effects are and will remain of the major concern: only the first scratch of all-magnetic case (NICA?)

Still Terra Incognita for all-electric rings despite first forays

Example of unexpected imperfection in all-electric rings: systematic false EDM effect from gravity (first discovered in **1916**!) is fully understood & Orlov-Flanagan-Semertzidis result vindicated

Future: CPEDM in the formative stage. A good piece of physics for NICA. Talks by Yuri Filatov and Anatoly Kondratenko at this meeting

21. October 2014

Mitglied der Helmholtz-Gemeinschaft

a.saleev@fz-juelich.de

f.rathmann@fz-juelich.de

Summary and outlook

The srEDM and JEDI experimental plans have motivated new interesting results on spin dynamics in storage rings (spin tune mapping, nonexponential spin decoherence, spin echo...)

COSY@Juelich is and will remain a unique facility for such studies (don't miss a chance at NICA! --- accelerator and spin dynamics studies are imperative)

Systematic backgrounds from ring imperfection effects are and will remain the major concern: only the first scratch off all-magnetic case

Still Terra Incognita for all-electric rings despite first forays

Exsmple of imperfection in all-electric rings: systematic false EDM effect from gravity (first discovered in 1916 !) is fully understood & Orlov-Flanagan-Semertzidis result vindicated

Future: CPEDM in the formative stage

JEDI: Phase lock to maintain resonance condition

- Active feedback system was developed
- To compensate a drift of spin tune, RF Wien filter frequency is adjusted every 2 seconds to maintain Δ_{WF}
- Early tests conducted rather varying spin tune at fixed RF by changing RF cavity frequency (revolution freq. ______ changes)
- Spin phase was maintained constant within 0.21 rad

JEDI: testing zero Lorentz force properties of RF WF installed at COSY

- Control the ratio and relative phase of E- and B-field in the Wien filter by two capacitors CL and CT in RF circuit
- Non-zero Lorentz force in RF WF induces coherent betatron oscillation of the beam measure the vertical and horizontal kicks:

Effects are different for different RF harmonics

- low- $\beta \rightarrow$ off-axial trajectories \rightarrow non-zero Lorentz forces are stronger
- Orbit effects are amplified at low- β :

JEDI: controlling alignment of RF WF

Accuracy of Wien filter orientation was determined during recent COSY magnet survey & alignment campaign

- New electronic levels implemented to set WF rotation angle with accuracy of at least 170 µrad:
- EDM mode: $\theta(\vec{B} \parallel \vec{e}_y) = (+0.74 \pm 0.17)$ mrad at T = 21.006 °C
- MDM mode: $\theta(\vec{B} \parallel \vec{e}_x) = (+0.57 \pm 0.17)$ mrad at T = 20.865 °C
- $\vec{e}_{\rm v}$ denotes true normal to ring plane, and $\vec{e}_{\rm x}$ is outward-pointing radial vector in ring plane

JEDI: Rogowski coil beam position monitors

Conventional BPM

- Easy to manufacture
- Length ~ 20 cm
- Relative resolution \sim 10 μm
- Absolute accuracy ~ 1 mm

Rogowski coil BPM

- Excellent rf-signal response
- Length ~ 1 cm
- Relative resolution ~ 1.25 μm
- Absolute accuracy \sim 150 μ m

Rogowski coil BPM's: ultimate choice for future EDM experiments

• Two Rogowski coils installed at entrance and exit of RF Wien filter

JEDI: beam-based alignment

- Beam-based alignment of magnetic center of quadrupoles needed to overcome systematic errors appearing from misalignments of quads
- Use beam to optimize the beam position
- Vary quadrupole strength
- Observe orbit change
- Try to minimize the orbit change

Driven oscillations off-resonance

• Spin echo for vertical polarization

$$S_y = \frac{1}{\sqrt{1 + \Phi^2}} \cos[\phi - \kappa(n)]$$

$$\kappa(n) = \arctan(\Phi),$$

• At $\phi = \Phi = 0.e.$, $n = \frac{\pi}{\delta_{WF}}$ enuation and phase walk
vanish: a "spin echo" !

Mitglied der Helmholtz-Gemeinschaft

Beam-based alignment at COSY

• Steerers around the quadrupole QT12 (located at 30 m) are varied to adjust the beam position inside the quadrupole

Beam-based alignment at COSY cont'd

- Quadrupole magnets have additional coils which are powered separately. They allow to vary quadrupole strength *k*
- The further the beam is off the center of quadrupole, the stronger is the orbit change w.r.t. to Δk
- A merit function: beam deviation over the ring vs quadrupole strength Δk

Beam-based alignment at COSY: JEDI preliminary results

• Optimal beam position was found for quadrupole QT12 at COSY:

JEDI: from EDDA to WASA to dedicated LYSO polarimetry

- Early studies were based on EDDA polarimeter
- Present studies: WASA is a polarimeter
- Current polarimetry development: polarimeter based on LYSO crystals
 - Advantages: high energy resolution, high yield, compactness
 - Successfully tested in the extracted beam at COSY

JEDI polarimeter based on LYSO calorimetry

Mitglied der Helmholtz-Gemeinschaft

Deuteron Stopping Power of LYSO Crystals

JEDI LYSO polarimeter

JEDI: deuteron database experiment at modified WASA Forward Detector

- Motivation: optimize polarimetry for ongoing JEDI activities
- Goal: vector and tensor analyzing power
- dσ/dΩ for dC elastic scattering
- Main background from deuteron breakup
- Beamtime in November 2016 (2 weeks):
- Deuteron energies: 170, 200, 235, 270, 300, 340, 380 MeV
- Nominal beam polarization: $(Py,Pyy) = (0,0), (-\frac{2}{3},0), (\frac{2}{3},0), (\frac{1}{2}, -\frac{1}{2}), (-1, 1)$
- Targets: C and CH2

JEDI: database experiment at WASA

• Vector Analyzing power for elastic dC scattering

Summary and outlook

- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM
- COSY remains a unique facility for such studies
- Precursor JEDI search for the deuteron EDM at COSY under preparation
- Strong interest of high energy community in storage ring searches for EDM of protons and light nuclei as part of physics program of the post-LHC era
- Proposals for prototype all-electric 30 MeV EDM storage ring are under consideration (CERN? COSY? --- part of the Physics Beyond the Standard Model and Beyond LHC: CDR to be prepared for fall 2018)
- Crossed ExB field prototype EDM storage ring might be an option before going to TDR for ultimate EDM machine

Damping of driven oscillations

One-particle resonance strength

$$\epsilon(\xi) = \epsilon_0 J_0(C_{WF}\psi_s\xi)$$

Spread of resonance strengths --→ decoherence of polarization of an ensemble of particles

$$S_{y} = \Re \langle \exp[-in\epsilon(\xi)] \rangle_{\xi}$$
$$= \Re \left\langle \exp \left\{ -in\epsilon_{0} \left[1 - \frac{1}{4} C_{rf}^{2} \psi_{s}^{2} \xi^{2} \right] \right\} \right\rangle_{\xi}$$
$$= \frac{1}{\sqrt{1 + \rho^{2} n^{2}}} \cos[\epsilon_{0} n - \kappa(n)],$$

Damping parameter

$$\rho = \frac{1}{4} \epsilon_0 C_{WF}^2 \psi_s^2$$

- Phase walk $\kappa(n) = \arctan(\rho n)$

Damping of driven oscillations

 An example of damping of oscillations driven by , RF Wien (JEDI, November 2017, very preliminary):

- p0-initial amplitude of oscillation
- p2-oscillation frequency(* 2π)
- p3-parameter of damping
- p4 -normalization for running phase function

Summary and outlook

- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM
- COSY remains a unique facility for such studies
- Precursor JEDI search for the deuteron EDM at COSY under preparation
- Strong interest of high energy community in storage ring searches for EDM of protons and light nuclei as part of physics program of the post-LHC era
- Proposals for prototype all-electric 30 MeV EDM storage ring are under consideration (CERN? COSY? --- part of the Physics Beyond the Standard Model and Beyond LHC: CDR to be prepared for fall 2018)
- Crossed ExB field prototype EDM storage ring might be an option before going to TDR for ultimate EDM machine

Position determination

Coil parameters R = 58.625 mm a = 6.375 mm n = 434 s = 0.15 mm

$$\frac{\Delta U_{\text{hor}}}{\Sigma U_i} = \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4} \qquad \frac{\Delta U_{\text{ver}}}{\Sigma U_i} = \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

$$\frac{\Delta U}{\Sigma U_i} = c_1 x_0 - c_3 \left(x_0^3 - 3y_0^2 x_0 \right) + c_5 \left(x_0^5 - 10y_0^2 x_0^3 + 5y_0^4 x_0 \right)$$

$$c_{1} = \frac{2}{\pi\sqrt{R^{2} - a^{2}}} = 10.9 \cdot 10^{-3} \frac{1}{\text{mm}}$$

$$c_{3} = \frac{a^{2}R}{3\pi(R^{2} - a^{2})^{5/2}(R - \sqrt{R^{2} - a^{2}})} = 1.0818 \cdot 10^{-6} \frac{1}{\text{mm}^{3}}$$

$$c_{5} = \frac{a^{2}R(4R^{2} + 3a^{2})}{20\pi(R^{2} - a^{2})^{9/2}(R - \sqrt{R^{2} - a^{2}})} = 0.1951 \cdot 10^{-9} \frac{1}{\text{mm}^{5}}$$

Calibration

Horizotnal and vertical voltage ratio coil 1

Horizontal and vertical voltage coil 2

Beam-based alignment

$$egin{aligned} f &= rac{1}{N_{ ext{BPM}}} \sum_{i=1}^{N_{ ext{BPM}}} \left(x_i (+ \Delta k) - x_i (- \Delta k)
ight)^2 \ &\quad f \propto (\Delta x)^2 \propto (x(ar s))^2 \end{aligned}$$

- Merit function is calculated for different initial beam positions in quadrupole
- By finding the minima of merit function, optimal beam position can be found

Electric dipole moment and fundamental symmetries

- Permanent separation of + and charges
- EDM \vec{d} and MDM $\vec{\mu}$ of particle are aligned along spin \vec{S}
- Possible only if P and T-symmetries are broken

JEDI Collaboration at IKP FZJ

- Based at COSY in Juelich: unique facility for EDM-related spin dynamics
- About 120 participants
- Belarus France Georgia Germany JEDI JINR Dubna Italy – Poland - Republick of Korea – Russia – Sweden – United Kingdom – USA
- http://collaborations.fzjuelich.de/ikp/jedi/documents/colpapers.shtml

How to measure beam polarization?

JÜLICH JEDI: polarimetry at COSY (so far a junkyard approach)

- Early studies based on EDDA polarimeter
- Present studies: WASA is a polarimeter

JEDI: RF Wien-Filter-based first direct measurement of EDM at COSY

- In pure magnetic storage ring, T-BMT eq.:
- $\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S}(t) = -\frac{q}{m} \left(G\vec{B} + \frac{1}{2}\eta(\vec{E} + \vec{\beta} \times \vec{B}) \right) \times \vec{S}(t)$
- EDM effect in the stable spin axis: $\vec{c} = \vec{e}_x \sin \xi_{\rm EDM} + \vec{e}_y \cos \xi_{\rm EDM}$

JEDI: Waveguide RF Wien filter with crossed RF E&B fields

- RF spin rotation by radial E and vertical B fields without orbit distortions
- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY

Spin dynamics with RF WF

- RF WF works on spin tune frequency $v_{\rm RF} = v_s + K$, cyclotron harmonics K = -2, -1, 1, 2
- Relative phase Δ_{RF} between the rf field and spin rotation phase as extra knob

$$\theta_{\rm RF}(n) = \theta_{\rm s}(n) + \Delta_{\rm RF}$$

• A simulated pattern of EDM-induced resonance deuteron vertical spin build-up at $\Delta_{\rm RF} = 0$, and initial spin $S_{\rm x} = 1$ at $d_{\rm d} = 10^{-19} e \cdot cm$:

JEDI: first studies of spin dynamics with RF Wien filter at COSY. Build-up slope vs relative phase Δ_{WF}

- The slope of vertical polarization build up, $\dot{\alpha}$, was measured against different setting of relative phase Δ_{WF} for three orientations of Wien filter
- Testing $\epsilon = \frac{1}{2} \chi_{\rm WF} |\vec{c} \times \vec{w}|$ varying orientations of the Wien filter and stable spin axis

• Rotate Wien filter by small angle ξ_z around Z-axis

$$\vec{w} \approx \vec{e}_y + \xi_z \vec{e}_x$$

JEDI: Build-up slope vs relative phase Δ_{WF}

• Change the stable spin axis \vec{c} of the ring by a static solenoid: first cooler solenoids were used, afterwards JEDI switched to superconducting Siberian Snake

• 120-keV cooler solenoid at straight section opposite to RF WF rotated \vec{c} at location of Wien filter by $\cong \pm 3.71$ rad

 Eventually mapping the resonance strength with good statistics would allow for determination of initial stable spin axis

Synchrotron oscillations

Synchrotron oscillations: Nikolaev, Saleev, Rathmann, JETP Lett. 106(4), 213-216 (2017)

- Individual spin doesn't decohere, polarization decoherence comes from averaging over an ensemble.
- Bunch density and synchrotron amplitude, a_z, distributions are related by the Abel transform.
- A Gaussian bunch as an working approximation:

$$N_z \propto \exp(-z^2/B^2)$$

$$F\left(\xi = \frac{a_z}{B}\right) = 2\xi \exp(-\xi^2)$$

• Bunch length is related to $\Delta p/p$

Spin rotation with RF Wien filter

• With RF WF, spin resonance strength is

$$\epsilon = \frac{1}{2} \chi_{\rm WF} \left| \vec{c} \times \vec{w} \right|$$

• Infinite time: angle between vertical and horizontal polarization is:

$$S_{\rm y}(t) = S_{\rm H}(0) \sin \Delta_{\rm RF} \sin(\alpha(t))$$

$$\alpha(t) = 2\pi\epsilon f_R t = \operatorname{atan}\left(\frac{S_{\mathrm{y}}(t)}{S_{\mathrm{H}}(t)}\right)$$

• Slope of the vertical polarization build-up

$$\frac{dS_y}{dt}\Big|_{t=0} = 2\pi\epsilon f_R S_{\rm H}(0) \sin\Delta_{\rm RF}$$

• Continuous phase lock is called for to keep the resonance condition