Exotic Hadrons with Heavy Quarks: Experimental Perspective

Tomasz Skwarnicki Syracuse University, NY, USA

XXIV International Baldin Seminar on High Energy Physics Problems *Relativistic Nuclear Physics & Quantum Chromodynamics*

September 17 - 22, 2018, Dubna, Russia

My connection to Dubna

• My mentor during Ph.D. research (Crystal Ball experiment at DESY)

Bogdan Niczyporuk 1936-2017

M. Curie - Sklodowska University, Lublin, 1956-58;
M.S., Moscow University 1962;
Ph.D., Jagiellonian University, Krakow, 1973;
Dr.hab. Institute of Nuclear Physics, Krakow, 1983.

Research physicist, JINR, Dubna, 1963-73;

Adjunct, Institute of Nuclear Physics, Cracow, 1973-83; Visiting Prof., Stanford University (CA), 1983-88; Senior physicist, CEBAF (JLab) 1988-2003.

QCD and QCD motivated states

Hadrons = Non-perturbative QCD

Lattice QCD works well for lowestexcitations of (qq), (qqq).

Only approximate lattice simulations for **unstable** higher excitations

We have to **rely on data and QCDmotivated phenomenology** when trying to understand more complex hadronic structures.

A large number of hadronic states expected from radial and angular momentum excitations.

Unlike in QED, large fine and hyperfine structures for lower excitations.

Hadrons from diquarks?

7

Still an open question!

Does effective mechanism to suppress rapid fall-apart exist?

Tetraquarks (pentaquarks) vs meson-meson (meson-baryon) molecules

8

- The same quark content can, in principle, create a meson-meson molecule or a tetraquark
- However, mass spectrum from these two types of bindings are very different

Typically expect only one state n=1, L=0.

Fall apart prevented by spatial separation – long-lived states if below threshold.

Mass and J^P fairly constrained from the constituents.

EVENTS / 25 MeV

Hadron spectroscopy and heavy flavors

X(3872) J^{PC}=1⁺⁺

Could be $\chi_{c1}(2^{3}P_{1})$ but its isospin violating decay $X(3872) \rightarrow \varrho^{0}J/\psi, \ \varrho^{0} \rightarrow \pi^{+}\pi^{-}$ an order of magnitude too large for a (pure) $c\bar{c}$ state

Hadron spectroscopy and heavy flavors

New particle zoo: charmonium above flavor threshold

Figures from Olsen, Skwarnicki, Zieminska Rev. Mod. Phys. 90, 015003 (2018); arXiv:1708.04012

Mesons are $(q\bar{q})$ bound states.

New particle zoo: charmonium above flavor threshold (mostly a freak show)

13

Rev.Mod.Phys. 90, 015003 (2018); arXiv:1708.04012

Mesons are $(q\bar{q})$ bound states.

Mesons are **predominantly** $(q\bar{q})$ bound states below the open flavor threshold. **They are more complex structures above it,** and we have not yet understood them.

Lessons from X(3872)

- Answers to the nature of some of unusual hadrons don't need to be simple; more than one binding mechanisms can be at play $(X(3872): (c\bar{c}) + (D\bar{D}^*))$
- Coincidence of conventional hadron with an S-wave hadron-hadron threshold can have a profound impact on properties of the state
- We have seen examples of the latter from lighter hadrons, too:
 - $a_0(980)$, $f_0(980)$ and $K\overline{K}$ threshold (?); $f_1(1420)$ and $K\overline{K^*}$
 - $\Lambda(1405)$ and $K\overline{N}$ threshold
 - $D_{s0}(2317)$ and $D\overline{K}$, $D_{s1}(2460)$ and $D^*\overline{K}$

Be aware that the $(c\overline{c}) + (D\overline{D}^*)$ interpration of X(3872) remains controversial:

More data will be useful to clarify its nature!

X(3872)-χ_{c1}['] mixture ← pretty bizarre

15

Volume(χ_{c1}') /Volume(X₃₈₇₂) ≈ 10⁻³

Very weak $D\overline{D}^*$ binding \rightarrow very large state

X(3872), so far, is unique!

- The only exotic charmonium-like candidate which shows up consistently in many different productions mechanism, accompanying well-behaved *cc* state – ψ(2S), and detected in many different decays modes
- If coincidence of $\chi_{c1}(2^3P_1)$ with the $D^0\overline{D}^{0*}$ threshold is responsible for it, then there is no narrow analog of it in bottomonium
- Any other states like this, with conventional $q\bar{q}$ and exotic properties mixed in?

at forces dominated by π exchange.

This is the only clear spectroscopy emerging from new particle zoo. (Not everybody agrees: see e.g. A. Ali, L. Maiani, A. Polosa, V. Riquer, PRD91, 017502 (2015) → tetraquarks.)

Anomalous charmonium-like vector states

- Y(4220) and Y(4320/4360) do not align with $c\bar{c}$ states
- Γ_{ee} widths suppressed by 10²⁻³
- $\Gamma_{\pi\pi\psi}$ widths huge

Hadron Spectrum Collaboration (LQCD JHEP 1612, 089 • Hybrid-charmonium ? hybrid (n=1,L=0)

- Masses not too far from the predicted 1⁻⁻ hybrid by the lattice QCD:
 - Only one 1⁻⁻ hybrid expected in this mass range
 - $\psi(4020), \psi(4160), \psi(4415)$ not well reproduced by lattice
- Γ_{ee} suppressed by a spin-flip needed to produce cc in S=0 configuration
- $\pi\pi\psi$ can proceed via DD** rescattering
- However, expected to decay to $DD^{(*)}\pi$, but not observed [CLEO-c PR D80, 072001(2009)]

P.Guo, A.Szczepaniak G.Galata, A.Vassallo, E.Santopinto PRD78, 056003 (2008) ...

Anomalous charmonium-like vector states

 $D\overline{D}_{1}(2420)$ molecule Q.Wang, C.Hanhart, Q.Zhao, PRL 111 (2013) 132003

Asymmetric shape: M.Cleven, Q.Wang, F.K. Guo, C. Hanhart, U-G. Meißner, Q. Zhao, **PRD90 (2014) 074039**

Tetraquark (diaquarkonium) L.Maiani, F. Piccinini, A.

Polosa, V. Riquer, PR D89, 114010 (2014):

- Tetraquark \rightarrow tetraquark transitions: Y(4260) \rightarrow Z_c(3900) π , Y(4260) \rightarrow X(3872) γ (possibly observed by BESIII)

Anomalous charmonium-like vector states

Y(4660): the same or different state in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ and $e^+e^- \rightarrow(\gamma) \Lambda_c^+\Lambda_c^-$? Dai et al., PRD96, 116001 (2017)

- $\succ \psi(5^3S_1) \text{ or } \psi(6^3S_1) \text{ affected by } (\Lambda_c \overline{\Lambda}_c)?$
- tetraquark?
- Baryonium ?

G.C. Rossi, G. Veneziano, NP B123, 507 (1977)!

Many other strange animals with no clear interpretation

LHCb PRL118, 022003 (2017) PRD95, 012002 (2017)

Thomas Britton, PhD, Syracuse. 2016 https://surface.syr.edu/etd/510/

B → XK, X → J/ψφmolecules, tetraquarks, $3,4^{3}P_{1,0}(c\bar{c})$ in the mix? (some seen also by CDF,D0,CMS)

Comparison with $B \rightarrow XK, X \rightarrow J/\psi\omega$ and the strange J^P pattern speak against $c\bar{c}$ interpretation

Predicted two 1⁺⁺ tetraquarks in this mass range (S=0,1 diquarks in color triplet and sextet)

Many other strange animals with no clear interpretation

25

If charmonium is such a freak-show zoo above the open flavor threshold, we need to keep an open mind about multiquark or hybrid states altering expectations based on naïve $(q\bar{q}), (qqq)$ models. Analyzes of coupled channels, and of many observables are important for probing natures of the observed states.

Enormous samples of light hadrons produced in decays of b-hadrons are largely unutilized → opportunity for nuclear and high-energy communities to team up

Plenty of evidence for diquarks in heavy baryons (example)

Spin of charm quark decouples because of its heavy mass: good place to study ss quark pairs:

Exotic Hadrons, Dubna, Sep.18,2018 Tomasz Skwarnicki

Observation of double Y production at LHC

- First observation of $b\overline{b} + b\overline{b}$ production at LHC. An example, where high luminosity of CMS, and central region coverage, won over lower muon momentum thresholds in forward region at LHCb.
- *bb* not in the same hadron yet.
- Can look for $(bb)(\overline{b}\overline{b})$ tetraquark in decays to Y(1S)Y(1S) some predicted it to be narrow.
- In stable teraquark need to look for b → cW decay. Look out for observations of bbq baryons, as signs of reaching sensitivity to detect (bb)(ud). It will be hard to detect it even at LHCb Phase II upgrade. A better chance to detect (bc)(ud) if stable or narrow (thousands of (bc̄) mesons have been already detected at LHC).

Colliders and bb rates Past and future: experiments producing b-hadrons

30

Decays of b-quark proved to be an excellent source of hadrons containing $c, c\bar{c}$

These experiment see directly produced charm as well

Upgraded LHCb

Good hadron ID, dedicated large-bandwidth triggers. Enormous rates of b-mesons and b-baryons

Belle II II 測定器 ECL Aeroael RIC PXD+SVD CDC

Higher luminosities than LHCb. No hadron ID. Limited triggers.

Good hadron ID, good detection of neutrals. Good absolute reconstruction efficiencies.

KLM

Future: photo-production of P_c states at JLab

 $\gamma p \rightarrow J/\psi p$

GlueX preliminary

M. R. Shepherd Bound States in Strongly Coupled Systems March 15, 2018

Overview DC FTOF Solenoid CTOF SVT Beamline HTCC Torus Click on boxes for info

will run in Spring 2019

Conclusion

- New particle zoo for charmonium above open flavor threshold: more "exotic" than conventional states
 - Interplay of conventional states and meson-meson thresholds (molecules?) in X(3872) and in a few lighter hadrons
 - Good evidence for meson-meson molecules from the threshold $Z_b^{\pm,0}$, $Z_c^{\pm,0}$
 - Many more weird states (including pentaquark candidates) without well-established explanation
- Possible implications for light-quark hadron spectroscopy?
- No well established states with gluon as a constituent, but experimental efforts continue.
- Great prospects for orders of magnitude larger samples from on-going and future projects – expect resolution of existing questions but hopefully also new surprises