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 Motivation & Goals 

• Systematic analysis of  inclusive spectra in pp, pA and AA collisions 

      to search for general features of 

               - hadron structure 

               - constituent interactions 

               - fragmentation and other processes  

      over a wide scale range. 

• Development of a unified approach to description of  particle production 

      using principles of self-similarity, fractality, and locality  

      of  hadron interactions at constituent level. 

• Search for signatures of a phase transition in nuclear matter  

      exploiting scaling properties in suitable representation of data.    

• Search for new principles, symmetries and conservation laws  

      which govern  physics at small distances.  
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Principles & Symmetries 

 Universal principles are usually reflected as regularities  

     in measured observables. They can be expressed as scalings in different 

representations of data. 
 z-scaling of differential cross sections of inclusive particles 
     as a tool to study principles and symmetries that influence  
     production processes at constituent level.  

 z-reprezentation of  transverse momentum spectra based on principles of  

 Self-similatity 

 Fractality 

 Locality. 

There exists a symmetry inherent to them: 

Symmetry with respect to structural degrees of freedom 

 - structural relativity  

M.V. Tokarev and I. Z.: in Investigation of Properties of Nuclear Matter at 

High Temperatures and Baryon Densities    

Dubna, Russia, 2007,  edited by  Sissakian, A.N. -  Soifer, V.A,   

ISBN 5-9530-0166-5, p. 99-136. 
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"Fundamental symmetry principles dictate basic laws of physics,  

  control structure of matter, and define the fundamental forces in Nature."             

                                                                                           L.M. Lederman 

Self-similarity  - property of physical phenomena and the principle to construct theories.  

“Scaling” and “Universality”  were developed to understand critical phenomena.  

    Systems near phase transitions  or a critical point (CP) exhibiting  self-similar properties   

    are invariant under  transformation of  scale.  The  scaling is usually described by a power law. 

Critical exponents in the power laws are defined  by symmetry of interaction and dimension of space only. 

   The notions of scaling and universality have also been applied for particle production  

    far from a phase transition or a CP.  The system should reveal discontinuity in some characteristics  

    describing  its behavior  nearby the phase boundary or CP.                                         

                                                                                              H.Stanley, G.Barenblatt,… 

 Fundamental principles and symmetries  

Fractality - concept widely used in physics. …..non-integer dimensions,  

                   fractal objects (some fractals posses property of self-similarity)  

Multifractality - characterized by many non-integer dimensions  

Universal principles: - reflected as regularities in measured observables. 

                                   - expressed as scalings in different representations of data.  
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  Self-similarity principle

     Dropping of certain quantities out of description of physical picture  

        of a self-similar system. 

  Construction of self-similarity parameters as simple combinations 

        of suitable physical quantities. 

Reynolds number  

in hydrodynamics:  

          R=Ur/m 

U-velocity of the fluid  

r-density of the fluid 
m-viscosity of the fluid         

Point explosion: 

            P=r(Et2/r)-1/5 

r-radius of the front wave    

E-energy of the explosion  

t-elapsed time    
r-density of the environment         

Examples of self-similarity parameters: 
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Self-similarity in Inclusive Reactions 

 

 

Differential cross section Ed3σ/dp3 for production of  

an inclusive particle with mass m depends on: 
1. reaction characteristics (A1, A2, P1, P2) 
2. particle characteristics (m, p, ) 
3. structural and dynamical characteristics (d, e, ..dN/dh..) 
         of the reaction M1 + M2 g m + X 

dz

dσ

Nσ

1
ψ(z)

in



We search for a solution y(z)~ Ed3σ/dp3  

reflecting self-similarity, locality, and fractality of hadron interactions  

which depends in a universal way on an adequate, physically meaningful,  

but still simple self-similarity variable z: 

The assumption of self-similarity of hadron interactions transforms to requirement 

 of simultaneous description of inclusive spectra by a scaling function  y(z) . 

Due to the property of self-similarity, it should be achieved by grouping suitable 

 characteristics of the inclusive process into a relevant self-similarity parameter z . 
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A.M. Baldin (1998): 

Hypothesis of self-similarity in Relativistic nuclear physics:   

... search for (P1,P2, ...)  or eventually for y(z,…).   

…parameters  i  have to be found from experiment.   

V.S. Stavinsky (1972):  cumulative particle production    

F(a, b, g)  Ed3/dp3;  a, b, g  p, , s  

(Pi)  exp (Pi /c);        Pi=1-xi;    x1,x2 - cumulative numbers 

(P0)  exp (-P0 /c);     P0= (x1P1+x2P2)
2/mN   

…but universality is broken by power asymptotic at high pT  !!! 

I. type:   

Self-similar solutions F(a,b,g,..) expressed via scaling function (P1,P2, ...)  

depending on self-similarity parameters P1(a,b,g,..),  P2(a,b,g,..) ....   

(F, a, b, g – dimensional quantities;  , P1, P2 -  dimensionless functions) 

G.I. Barenblatt 

(1978)  

z ?

ψ(z) ? 





II. type (intermediate asymptotics): 

If  (P1,P2, ..) does not converge but has power asymptotic for extreme P1,P2,.., 

then self-similar solutions F can be expressed via iΔ

0 iψ(z,...), z Π /Π

Self-similarity types 



 -1  resolution at which constituent sub-process   

          can be singled out of the inclusive reaction. 
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recoil 

particle 

(Functional) self-similarity of II. type & variable z  

1 2 ε εδ δ

1 2 a bΩ (1-x ) (1-x ) (1-y ) (1-y )a b

Parameters = fractal dimensions: 
d1,d2  - structure of  M1, M2 
ea, eb  - fragmentation processes 

  relative number of all constituent configurations  

        containing the sub-process defined by {x1, x2, ya, yb}  

1)y(x,Ωif) z(Ω 1  -

 z  - self-similarity parameter of II. type 

      - expressed via momentum fractions xi, yi  

      - fractal measure 

fractal property of  z: 


 

1/2s
 z

i 
P0 (x1P1+x2P2)

2-mi 
Momentum fractions {x1, x2, ya, yb} 

define constituent sub-process  

inclusive 

particle 

ma 

mb 
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Fractality in Hadron Interactions  

Final-state phase space in the high-energy and high-pT limit is a fractal… 

                                                        B. Andersson, P. Dahlquist, G. Gustafsson 

QCD branching structure of parton cascades shows self-similar nature 

and leads to QCD anomalous dimension of the phase space….   

                                                                          M.I. Dremin, B.B. Levtchenko  

…to see fractality of phase-space experimentally, important role of energy and   

  entropy distributions was emphasized….                                    J.D. Bjorken  

- intermittency of spectra of secondary particles             

                                                 A. Bialas, R. Peshanski, M.I. Dremin, W. Kittel…..  

Evidences of fractality in high energy physics:  

 - fractality of the emitting source           O.V. Utyuzh, G. Wilk, Z. Wlodarczyk  

 - fractal structure of thermodynamic functions                             A. Deppman,…  

 - fractal structure of proton                                                           T. Lastovicka 

 - and others… 



XXIV ISHEPP                                                    

September 17-22, Dubna 2018 

11 

Fractality of Hadron Constituents  

    We consider hadrons and nuclei as extended objects which have 

fractal properties with respect to increasing resolution 
concerning the parton content involved. 

Hadron constituent sub-structure does not exhaust  

with increasing resolution. 

Collisions of hadrons and nuclei at high energies are assumed as collisions of 

hadron constituents - objects with inexhaustible (parton) structure  

at small scales.  

Assumption: 

 (Objects consisting of “subtle nets” of quarks, anti-quarks and gluons  
   which emit other (anti)quarks and gluons at small scales and  
   those in turn generate particles of the same sort at even smaller scales etc. ). 
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Variable z & minimal resolution -1 

  Gross features of the single particle distributions 

 
  in terms of the constituent sub-process 

   
 (x1M1) + (x2M2 )  (ma/ya) + (x1M1+x2M2+mb/yb)  

 (x1P1+x2P2 –p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

 M1+M2  m + X  

1/2

max

s
z

W



2/1

s      - transverse kinetic energy consumed on production of ma & mb  

 W  - relative No. of all configurations  which can lead to production of ma & mb 

z         - fractal measure 

- min. resolution w.r.t. all sub-processes satisfying (*) 

1 2

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a be ed d  - - - -

( ) ( )1 2 ch 0 1 2

cW , , , (dN /d  | ) , , ,a b a bx x y y x x y yh  

recoil 

particle 

ma 

mb 

(Locality of hadron interactions) 

Inclusive particle  

with momentum p 

0

c

max ch max
W dN /dη Ω( ) 

1

ma x

-


(*) 

1

0 maxz z - 

Fractality:  d1,d2, ea, eb - fractal dimensions 

 - relative No. of constituent configurations which 
      contain a sub-process defined by x1, x2, ya, yb  

1

1 2 maxx , x , y , y 1 Ωa b z-    



max

1/2

W

s
z 
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Variable              & Energy   

( )a a λ 1 1 2 2 aT y s M λ M λ m - - -

( ) ( )
2 2

λ 1 1 2 2 χ 1 1 2 2s = λ P+λ P s = χ P+χ P

i i ix =λ +χ

        - transverse kinetic energy 

              consumed on production of ma & mb  

1/2

a bTs T  

( )b b χ 1 1 2 2 bT y s M χ M χ m - - -

1/2s

1 1 2 2 1 2 1 2(λ χ ) (λ χ ) (λ λ ) (χ χ )      

2 2

a T a aT p m m  -
2 2

b T b bT p m m  -
bTaT /yp/yp 

0
maxmax

c

ch
W dN /dη Ω( ) 

recoil 

particle 

ma 

mb 

Constituent sub-process: 

Inclusive particle  

with momentum p 

with momentum p 
_ 

1/2s
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Scale transformation of z & y(z) 

max

2/1

W


s
z

 

 

 

 

 

 

 

 

 

 

 

0 0z' z/ ψ'(z')W    W ψ(z) 

W0 - absolute number of constituent configurations  

        (drops out of the z-scaling).  

W0=W0(F)  - depends on type (F) of the inclusive particle (m). 

1

F Fz α z ψ α ψ- 

Scaling functions for different hadrons collapse   

to a single curve using the transformation   

aF =W0(F)/W0()  for the corresponding particle type (F) 

0

ψ(z)dz 1



The transformation preserves the normalization  

dz

dσ

Nσ

1
ψ(z)

in



Scaling variable: Scaling function: 
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z-scaling in pp Collisions at RHIC 

KS , K
-
, K*, , Λ, , Ω, Σ*, Λ* 

0  -, K
-
 p, Λ 
_ 

FNAL  ISR: 

 PRD 19 (1979) 764 

 NPB 100 (1975) 237 

 NPB 106 (1976) 1 

 PLB 64 (1976) 111 

 NPB 116 (1976) 77 

 NPB 56 (1973) 333 

 PRD 40 (1989) 2777 

STAR: 

PRL 97 (2006) 132301 

PLB 612 (2005) 181 

PRC 71 (2005) 064902 

PRC 75 (2007) 064901 

PRL 108 (2012) 072302 

PLB 616 (2005) 8 

PLB 637 (2006) 161 

PHENIX: 

PRD 83 (2011) 052004 

PRC 90 (2014) 054905 

  Energy & angular independence 

  Flavor independence  

  Saturation for z < 0.1 
  Power law  Ψ(z)z-b for high z > 4 
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Fractal self-similarity of hadron interactions 

z-scaling reflects principles of locality, self-similarity, and fractality  

Locality: collisions of hadrons and nuclei  

              are considered as local interactions of their constituents 

Self-similarity: interactions of the constituents are mutually similar.  

Fractality: self-similarity of the interactions over a wide scale range. 
                 (relative number of configurations depends on fractal dimensions)  

Numerous analyses of inclusive reactions show that  

production cross sections of inclusive particles can be described  

by a universal scaling form using data z-presentation 

Assumption of fractal self-similarity of hadron interactions includes a new symmetry  

motivated by basic property of QCD diagrams: 

(q, q, g) can emit other (q, q, g) at small scales and those can generate particles  

of the same sort at even smaller scale etc…. 

There should exist conservation of a scale dependent quantity  

characterizing hadron interactions at a constituent level  

_ _ 
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Variable z & Entropy S 
1/2

max

z
W

s

 

 

 

 

 

 

 

 

 

 

 

0

c

max ch max
W dN /dη Ω( ) 

1 2 ε εδ δ

1 2 a bΩ (1 x ) (1 x ) (1 y ) (1 y )a b - - - -

0ln W ln WS  Entropy:            Thermodynamical:                         Statistical: 

Vc lnT     RlnV      const.S   

1 2 a b 00

δ δ a b1 2c ln(dN/dη ) ln[(1 x ) (1 x ) (1 y ) (1 y ) ]  lnWS
ee

   - - - - 

  dN/dη|0   characterizes “temperature” of the colliding system.  
  local equilibrium            dN/dη|0 ~T3   (for high T and small μ) 
  c  - “specific heat” of the produced medium. 
  d1, d2, ea, eb - fractal dimensions in space of momentum fractions {x1,x2,ya,yb} 
  Entropy S increases with dN/dη|0 and decreases with increasing resolution Ω-1  

0z' z/W

Max. entropy S(x1,x2,ya,yb)  Max. number of configurations W(x1,x2,ya,yb) 

under condition:  (x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

max max 0ln W ln WS  

Scale transform: 

max
Ω z
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Maximum entropy principle with a kinematic constraint 

1 2 a b 1 2 a b 1 2 1 2 2 1 0(x ,x ,y ,y ) (x ,x ,y ,y ) β(x x -x λ -x λ -λ )  

1 2 ε εδ δ

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a b  - - - -

( ) ( )1 2 1 2 0, , y ,y ln , ,y ,y lna b a bS x x x x    

(x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

1 2 1 2 2 1 0- - - 0x x x x   

i i
i

a by y

 
  

0 2 2

b a

b ay y

 
  -

( )
( )1 2 1 2

j

i

P p

PP M M
 

-

( )1 2 1 2

j b

i

M m
v

PP M M


-

( )

2

,

,

1 2 1 2

0.5 a b

a b

m
v

PP M M


-
, 1,2i j 

Maximization of the functional 

Entropy S: 

with a Lagrange multiplicator b.  

Kinematic constraint: 
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Invariant combinations of momentum fractions 

Conditions for maximal Entropy S: 

( ) ( )  1 1 2 2
2 2 1 1 1 2 1 2 0

1 21 1

x x
x x x x x x

x x

d d b b b
    -  -        - -   

   2 1 1 2 0 1 2 02
1 1

a a b b

a b

y y
x x x x

y y

e e b b
        

- -  

1 2 1 2 2 1 0- - - 0x x x x   

1
2 2

1 1

( ) 0
1

x
x x

d
b 

 
 -  - 

 -

2
1 1

2 2

( ) 0
1

x
x x

d
b 

 
 -  - 

 -

1 2
2 12 2 3

2
0

1

a
a

a a a a a

x x

y y y y y

e
b   

  
 -   -  

 -  

1 2
2 12 2 3

2
0

1

b
b

b b b b b

x x

y y y y y

e
b   

  
 -     

 -  

1 1 2 2

1 21 1 1 1

a a b b

a b

x x y y

x x y y

d d e e
  

- - - -

Kinematic constraint: 

1 2 1 2 1 2 1 2 2 1 0( , , , ) ( , , , ) ( - - - )a b a bx x y y x x y y x x x xb     



for arbitrary                                !!! 
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A conservation law from maximum entropy 

1 1 2 2

1 21 1 1 1

a a b b

a b

x x y y

x x y y

d d e e
  

- - - -

1

0
x




 2

0
x





0

ay





0

by






Solution (numerical only): 

( )1 1 1 2 1 2, , , , , ,a bx x P P p d d e e

Max. Entropy 

( )2 2 1 2 1 2, , , , , ,a bx x P P p d d e e

( )1 2 1 2, , , , , ,a a a by y P P p d d e e

( )1 2 1 2, , , , , ,b b a by y P P p d d e e

Conservation law: 

Conserved quantity:  
ζ

C(ζ)= Dg(ζ) g(ζ) =
1-ζ

Inclusive particle  

with momentum p 

recoil 

particle 

1 2 1 2, , , , , ,a bP P p d d e e

ma 

mb 

P1 P2 
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The conserved quantity C(z) 

-  ability of  the fractal systems to create (structural) constituents  

-  cumulative property of internal structure of the colliding hadrons/nuclei 

ζ
C(ζ)= D

1-ζ

D(=d1, d2, ea, eb) – fractal dimension 

z(=x1, x2, ya, yb) – momentum fraction 

-   property of a fractal-like object (or fractal-like process) with fractal dimension D 

    to form a “structural aggregate” with certain degree of local compactness 

    which carries the momentum fraction z.  

-  aggregation property of  fragmentation processes 

C(z) characterizes: 

C(z)  is proportional to fractal dimension D of  the respective fractal system. 

    The larger momentum fraction z carries a structural constituent  

    (or an aggregated part) of  the fractal-like system, the larger value of  C(z) it has. 

 C(z) – “cumulativity” (“fractal cumulativity”)  

              of a fractal-like structure with fractal dimension D 

              carried by its constituent with the momentum fraction z 
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 Composition rule for cumulativity C(z) 

-1C(ζ'')=C(ζ)+C(ζ')+D C(ζ)C(ζ')

    Composition rule for  C(z) leads to q-exponential type of the distributions  

    of the Tsallis-Pareto form with non-extensivity parameter q-1~1/D  

- Property typical for fractals with a fractal dimension D 

C(ζ)= Dg(ζ)

ζ
g(ζ)=

1-ζ
'' ' 'g g g gg   (1 '') (1 )(1 ')z z z-  - -

- Different z  .... different levels of resolution  

- Associative property 
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 Cumulativity C(z) & Energy E(b) 

'' ' 'g g g gg  

(1 '') (1 )(1 ')z z z-  - -

1 1 2 2

1 21 1 1 1

a a b b

a b

x x y y

x x y y

d d e e
  

- - - -

1 2

2 2 2 2

1 21 1 1 1

a b

a b

M M M M

b b b b
  

- - - -

ζ
C(ζ)= Dg(ζ) g(ζ)=

1-ζ 2

1
E(β)= Mγ(β) γ(β)=

1-β

 Conservation law:  

 Composition rule:  

2 2'' 1 ' 1 'g g g gg - - 

(1 '') (1 ) (1 ')

(1 ") (1 ) (1 ')

b b b

b b b

- - -


  

0 1z  1 1b-   semigroup:   Lorentz group:  

 z  - momentum fraction 

 D - fractal dimension  
 b  - velocity fraction 

 M - mass  



 C(z)  - depends on resolution dependent    

              reference system {P1,P2,p}   
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 Cumulativity C(z) & Energy E(b) 

ζ
C(ζ)= Dg(ζ) g(ζ)=

1-ζ 2

1
E(β)= Mγ(β) γ(β)=

1-β

 E(b)  - depends on motion dependent   

              inertial system {V1,V2,V3}   

recoil 

particle 

ma, p 

mb 

Non-structural objects (D=0):  

D=0 g z1,  but C(1) is finite 

Photon  (M=0): 

M=0 g b1,  but E(1) is finite  

Analogies:  

P1 P2 

 (State of  motion)   (State of resolution)  

 C(z)  - relativistic invariant w.r.t. motion   

scale of z  - is not absolute 

 D - can depend on other characteristics... 

Differences:  

Conservation law 

 

 does not depend on motion !!! 

 (It depends only on resolution.)  

1 1 2 2( ) ( ) (y ) (y )a a b bC x C x C C  
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 Quantization of fractal dimensions d1, d2, ea, eb  

1 2 a b 1 2 a b 1 2 1 2 2 1 0(x ,x ,y ,y ) (x ,x ,y ,y ) β(x x -x λ -x λ -λ )  

1 2 ε εδ δ

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a b  - - - -0ln lnS    

1
2 2

1 1

( ) 0
1

x
x x

d
b 

 
 -  - 

 -

2
1 1

2 2

( ) 0
1

x
x x

d
b 

 
 -  - 

 -

1 2
2 12 2 3

2
0

1

a
a

a a a a a

x x

y y y y y

e
b   

  
 -   -  

 -  

1 2
2 12 2 3

2
0

1

b
b

b b b b b

x x

y y y y y

e
b   

  
 -     

 -  

(x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

1 2 1 2 2 1 0x x -x λ -x λ -λ 0

i i
i

a by y

 
  

0 2 2

b a

b ay y

 
  -

( )
( )1 2 1 2

j

i

P p

PP M M
 

-

( )1 2 1 2

j b

i

M m
v

PP M M


-

( )

2

,

,

1 2 1 2

0.5 a b

a b

m
v

PP M M


-
, 1,2i j Maximum of the functional 

Quantization of  d1, d2, ea, eb manifests itself most prominently near fractal limit 

          find the solution in the region  x1, x2, ya, yb g1 and 

          write down explicit expression for entropy S in the fractal limit 
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Conditions for momentum fractions from max. entropy  

1

0
x




 2

0
x





0

ay





0

by






Constrained 

maximum for 

entropy: 

( ) 1 2 1 2
1 1 2 1 2 1 2 2 1 2 1 2 2

1 1
, ,y ,y , , 0a b b a

a a b b b a

x x x x
F x x x x

y y y y y y
        - - - - -  

( )
( ) ( )1 21 1 2 2

2 1 2 1 2 1 2 2 2 1 2 1 1

1 1 2 2

1 1
, , y ,y , , 0a b

a b a b

x xx x x x
F x x x x x x

y y x y y x
     

d d

- -   
 - - - - -    

   

( )
1 1

1 1 2 2
1 1 2

1 2

, , y , y 0
1 1 1 1

a a b b
a b

a b

y y x x
G x x

y y x x

e e d d
- -

   
  -     

- - - -  

( )
( ) ( )

1 2 1 2
2 1 2 2 1 1 2 2 12 2 2

1 12
, , y ,y 0b ab a b

a b

b b b b b b b a b a a

y yx x x x
G x x x x

y y y y y y y y y

  
   

e e

- -   
   - - - - -    

   

1 2 1 2 2 1 0- - - 0x x x x   

Solution: ( )1 1 1 2,x x   ( )2 2 1 2,x x   ( )1 2,a ay y   ( )1 2,b by y  

( )
( )1 2 1 2

j

i

P p

PP M M
 

-
Parameterized via: 
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Conditions for momentum fractions near fractal limit  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2

1 2 1 2

1 1 1 1 0i i i i i i
a b

a bL L L LL L

F F F F F F
x x y y

x x y y
   

 

     
-  -  -  -  -  - 

     

( ) ( ) ( ) ( )1 2

1 2

1 1 1 1 0i i i i
a b

a bL L L L

G G G G
x x y y

x x y y

   
-  -  -  - 

   

Conditions for momentum fractions in the region  x1, x2, ya, yb g1 :  

Fractal limit (L):  x1x2yayb =1   

( )( ) ( )( ) ( )( ) ( )( )1 2 1 0 2 0 01 21 11 1 1 1a bx xe ye y      - -   - -  -   - -

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 221 1 1 1

1 1 0 2 2 01 2 01 10 11 1aa b bx x y yd   d   e  e  - - - --   - - - ---

( )( ) ( )( )1

1 1

1 1 0 2 2 0 20 1 1x xd   d  - - -   - -

( )( ) ( )( )1 1

00 1 1 1a ba by ye  e  - - - - --

1 2 1 2 1 2 0e e v v       where:   Over-lined symbols calculated at fractal limit (L) 
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Momentum fractions near fractal limit    

( ) ( )
1 2 1

1

1 21 0

(1 )
1 ,

a b

e e
x

d

d d e e 

- -
- 

  

          solution in the region  x1, x2, ya, yb g1 :  

( ) ( )
1 2

1 2

(1 )
1

1

a
a

a b

e e
y

e

 d d e e

- -
- 

-   

( ) ( )
1 2 2

2

1 22 0

(1 )
1 ,

a b

e e
x

d

d d e e 

- -
- 

   ( ) ( )
1 2

1 20

(1 )
1 b

b

a b

e e
y

e

d d e e 

- -
- 

  

( ) ( )
( )

2 2

1 2

1 2

1 2 1 2

0.5b a b

a b

M M m m m
v v v v v

PP M M

  
    

-

( )
( )

2 2

0

1 2 1 2

0.5 b a

b a

m m
v v

PP M M


-
 - 

-

( )
( )

2 2

1 1 1

1 2 1 2

bP p M m
v

PP M M
 


  

-

( )
( )

1 1

2 2 2

1 2 1 2

bP p M m
v

PP M M
 


  

-

Maximum entropy principle 

z(Ω ) Ω 0 (x,y 1)   

to obtain value of maximal entropy 

1 2 ε εδ δ

1 2 a b(1 x ) (1 x ) (1 y ) (1 y )a b  - - - -

0ln lnS    

Substitute the solution into the expression:  

( ) ( ) ( )

( )
1 2 1 2

1 2 1 2 1 2 0 0

1 2 1 2

1bP p P p M M m
e e v v

PP M M
   

  
        

-

Over-lined symbols calculated at kinematic limit 



( ) ( )1 2 1 2 0ln 1 lna bS e e Sd d e e     - -   -
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Entropy S near fractal limit    

Maximum entropy principle: 

z(Ω ) (x,y 1)  

( ) ( ) ( ) ( )1 1 0 2 2 0 0ln ln ln 1 lna bd   d   e  e  -  -  -  - 

( ) ( )1 2 1 2lna b a bS d d e e d d e e       
1 1 2 2ln ln ln lna a b bd d d d e e e e- - - -

Entropy  S depends solely on fractal dimensions  

1 ln 1 lnS
e e e e

d
d d d d



    
   -    

    

2 2 2 2
1

1 1 1 1

1 ln 1 ln
d d d d

d
d d d d

    
   -    

    

1 ln 1 lnb b b b
a

a a a a

e e e e
e

e e e e

    
   -    

    

1 2d d d  a be e e 

note minus sign 
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S - entropy of a statistical ensemble 

Statistical ensemble of the interacting fractal configurations: 

2

1

b
I I I

a

S S S
e d e

d d e

   
     

     
1 2d d d  a be e e 

Large collection of the interacting fractals  
    - with random configurations {x1, x2, ya, yb, ...}  and 

   - with the same fractal dimensions {d1, d2, ea, eb} 

nd1 - configurations of internal structure of  M1 

nd2 - configurations of internal structure of  M2 

nea - configurations of fragmentation process to ma 

neb - configurations of fragmentation process to mb 

Entropy of the whole statistical ensemble:  

Entropy S of a  single “average” fractal configuration of the system: 

( ) ( )d 1 ln 1 lnIS r r r r   -  

2
1

1

b
I I a I

a

S n S n S n Sd d e

e d e

d d e


   
      

     
1 2n n nd d d 

inclusive 

particle 

recoil 

particle 

ma 

mb 
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Quantization of fractal dimensions d1, d2, ea, eb     

1 2d d d 

a be e e 

allows to draw physical consequences provided  

the fractal dimensions have quantum nature: 

( ) ( )d 1 ln 1 lnIS r r r r   -  

2
1

1

b
I I a I

a

S n S n S n Sd d e

e d e

d d e


   
      

     

1 2n n nd d d 

1 1 2 2 1d d d da b bn n n nd d e ed d e e       

2
1

1

b
I I a I

a

n n n
S n S n S n S

n n n

e d e
d d e

d d e



     
       

     

The expression 

 for the entropy S 

 S can be interpreted as the logarithm of number of ways 

      in which fractal dimensions of the interacting fractal structures 

      can be composed from the identical dimensional quanta, each of the size d. 

a bn n ne e e 
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Statistical interpretation of the entropy S    

as logarithm of the number of different ways  

how identical dimensional quanta can be shared  

among fractal dimensions of the interacting fractal structures. 

( ) ( )d 1 ln 1 lnIS r r r r   -  

1 2n n nd d d 2
1

1

b
I I a I

a

n n n
S n S n S n S

n n n

e d e
d d e

d d e



     
       

     
The entropy 

a bn n ne e e 

 - overall number of dimensional quanta each of the size d distributed  

   between                      quanta of fractal dimensions in the initial state 

          and                       quanta of fractal dimensions in the final state 

n n nd e 

1 2n n nd d d 

a bn n ne e e 

Different arrangements of such distributions:   

( )
,

!

! !

n n

n n

d e
d e

d e


 

( )
1 2

1 2

,

1 2

!

! !

n n

n n

d d
d d

d d


 

( )
,

!

! !a b

a b

a b

n n

n n

e e
e e

e e


 

( )
1 2, , ,dln

a b
S d d e e  

( )
1 2 1 2

1 1

, , , , , ,

1 2

!

! ! ! !a b a b

a b

a b

n n n n

n n n n

d d e e
d d e e d e d d e e

d d e e

  
     

for large                            and                            this gives (*) 1 2, , ,a bn n n nd d e e ln ! lnn n n n-

(*) 
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Conservation of the number of quanta of fractal cumulativity C(z)      

Quantization of fractal dimensions               results in  

quantum character of fractal cumulativity C(z): 

Conservation law for the fractal cumulativity  

in units of dimensional quantum d :  

The number of quanta of fractal cumulativity is conserved 

at any resolution given by arbitrary momenta P1, P2, and p 

of the colliding and inclusive particles.   

ζ
C(ζ)= D

1-ζ

D=d n

1 1 2 2

1 21 1 1 1

a a b b

a b

n x n x n y n y

x x y y

d d e e  
- - - -

The quantization is based on assumption of 

       - fractal self-similarity of internal hadron structure, 

       - fractal nature of fragmentation processes, and 

       - locality of hadron interactions at a constituent level 

up to the kinematic limit.   
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Symmetric reactions:      

For a symmetric inclusive reaction consider                             

( ) ( )1 2 0ln 1 lnS e ed e   - -  

2 2

2 2
ln 1 ln 1

2 2

f f

i i

p p

p p

e e   
-  - -   

   

1 2M M M  a bm m m  090cms 

Entropy S near fractal limit                                                 :    

1 2
2

d
d d  1 2

2

e
e e 

1 ln 1 ln
e e e e

d
d d d d

    
-   -    

    

2 24ip s M -

( )
22 4fp s M m - 

1 2 2

2 4

4

E s mM
e e

s M


 

-

1z(Ω ) , Ω (x,y 1)-    

E – energy of inclusive particle 

2

1 1 1

a b

a b

x y y

x y y

d e e
 

- - - 1 2x x x 
Conservation of cumulativity:                       

d dn nd ed e   
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Epilogue     

   z-Scaling is a specific feature of high-pT particle production established  

       in p-(anti)p collisions at the U70, ISR, SppS, Tevatron and RHIC.  

       It reflects self-similarity, locality, and fractality of hadron interactions 

       at a constituent level. 

   The scaling behavior was confirmed also for inclusive production of  
       direct photons, jets, heavy quarkonia and top quark.        

   Hypothesis of self-similarity and fractality was tested in AA collisions  
       using z-presentation of spectra of charged hadrons and pions.       

 
   Analysis of numerous experimental data indicates universality as well as  
       energy and multiplicity independence of the scaling function  y(z).  

   The variable z depends on multiplicity density, “heat capacity”,  
       and entropy of constituent configurations of the interacting system.  

   We present new insight into some aspects of the theory of z-scaling 
      and show what kind of physics can stand behind it  
      and what type of physical problems could be addressed by this approach. 
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Summary     

   Based on principles of self-similarity, locality, and fractality of hadron interactions  
      at constituent level, we demonstrated that z-scaling construction reflects 
      conservation of new quantity, named here “cumulativity” (or fractal cumulativity) 

   The conservation law follows from general ideas. It holds at any level of resolution  
       given by arbitrary momenta and masses of the colliding objects and 
       arbitrary momenta and types of the inclusive particles.   

    According to the Noether’s theorem, there must be a continuous symmetry,  
        a scale dependent translation symmetry,  
        which guaranties the conservation law for the fractal cumulativity.       

 
   The cumulativity C(z) is subject to a composition rule connecting C(z) 
       at different scales. It leads to distributions of the Tsallis-Pareto type  
       with non-extensivity parameters depending on fractal dimensions.  

   It was demonstrated that fractal dimensions can be interpreted as quantities  
       which have quantum nature.  

   It was shown that the quantization of fractal dimensions  
       results in preservation of the number of quanta of fractal cumulativity.   
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Further motivation:      
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Momentum fractions x1, x2, ya, yb 

 

 

2 2

i i i iχ = μ +ω ω Uμω ii 

α 1
U(ξ) ξ

2 α

-


i i ix λ χ 

Maximal entropy S = maximum of  

1ξ0,/δδα 12 

mi, x are simple functions of λ1 and λ2 

1 2 ε εδ δ

1 2 a bΩ (1 x ) (1 x ) (1 y ) (1 y )a b - - - -

Ωmax is calculated numerically  

         for every momentum p of  inclusive particle. 

(x1P1+x2P2–p/ya)
2 = (x1M1+x2M2+mb/yb)

2  

max  

00
c ln(dN/dη ) ln  lnWS     

j 0 z
i

1 2

(P q) q ±q
λ

(P P ) s /2


ap=y q
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Fractal self-similarity and Structural relativity  

 

 j

i

1 2

(Pq)
λ

(P P )


2

u α 1
U(ξ) ξ

2 α1 u

-
 

-

Maximal entropy:  

x - characterizes resolution 

( ) ( )

( ) ( )

1 2 1 2 1 22

1 2 1 2 1 22

1
χ χ μ μ u μ μ

1 u

1
χ χ μ μ u μ μ

1 u

-  - -   
-

   - -  
-

1 2 1 2χ χ μ μ function(u) 

A

j

i

1 2

(P q )
χ

(P P )


2 2

i i i iχ = μ +ω ω Uμω ii 

α 1
U(ξ) ξ

2 α

-


i i ix λ χ 

1ξ0,/δδα 12 

B

j

i

1 2

(P q )
μ

(P P )


1 2

1 1

λ λ
ξ

(1 λ )(1 λ )


- -

d1, d2 - fractal dimensions 

u - structural “velocity”  

Lorentz transform:  

Momentum fractions  

w.r.t. fractal structures of A, B:  
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“Structural velocity” u  at small scales  

2

u α 1
U(ξ) ξ

2 α1 u

-
 

-

222111 χλxχλx Momentum fractions:  

1ξ0

,/δδα 12





at fractal (kinematic) limit 

1α

1α
u



-


u' u"
u α α'α"

1 u'u"


 



Relativistic composition of “structural velocities” u is given by 

multiplicative composition of ratios of fractal dimensions di. 

x  g 1 at fractal limit 

1 2

1 1

λ λ
ξ

(1 λ )(1 λ )


- -

2 2

i i i iχ = μ +ω ω Uμω ii 

2

u α 1

2 α1 u

-


-
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Outlook and further motivation      

   Ratio of fractal dimensions ad2/d1 determines magnitude of the quantity U(x)  

       which is “4-velocity parameter” in elementary equations of structural relativity.   

   The quantization of  d1 and d2  
       is associated with quantization of the “structural velocity” U(x)   
       and results in quantum character of the structural relativity. 

   The asymptotic values of  U(zg1) (region near fractal limit) can be connected 
       with induced anisotropy of 4-momentum space at small distances which,  
       due to the quantum character of d1     d2, should be quantized as well. 

   The quantization concerns metric changes connected with “structural velocity” U(x).  

   We consider that quantum nature of fractal dimensions has connection to  
      quantization of metric structures at small distances 
      and motivates us to further study in this direction …. 

The z-scaling approach can be an effective tool to search for and study of  
new symmetries, conservation laws and quantum properties of  
hadron structure and fragmentation processes especially at small distances.   

The measurements of particle spectra with high pT at the energies of the future 
accelerators FAIR (GSI) and NICA (JINR) will be extremely suitable for studying 
the regime of large fractal cumulativities and can contribute to verification of 
quantum nature of fractality in the interactions of hadrons and nuclei. 


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 Self-similar 
object 

 Fractal 
 Similar objects  

D=ln8/ln3≈1.89,   DT=1 
D = 2, DT =2 

1. Two geometrical objects are called similar if one is the result of 

 a uniform scaling (enlarging or shrinking) of the other. 

2. Object is called self-similar if it is composed of parts similar 

to it as a whole. 

3. Object is called (self) similar fractal, if it consists of parts like 

him as a whole on any scale. 

Similarity, self-similarity, fractality  
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3q   4,p 

n-1 q e

TDD -d

)Ln(p)/Ln(qD 

1DT 

 anomalous fractal dimension 

  topological dimension 

 fractal dimension 

resolution 

 Curve length is a measure  
attributed to the fractal curve  

de - 0zz


-1|)(z

e
e

    Swedish mathematician 
Nils Fabian Helge von Koch 

Example of a Fractal Curve  


