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Motivation & Goals

Systematic analysis of inclusive spectra in pp, pA and AA collisions
to search for general features of

- hadron structure

- constituent interactions

- fragmentation and other processes
over a wide scale range.
Development of a unified approach to description of particle production
using principles of self-similarity, fractality, and locality
of hadron interactions at constituent level.
Search for signatures of a phase transition in nuclear matter
exploiting scaling properties in suitable representation of data.
Search for new principles, symmetries and conservation laws
which govern physics at small distances.
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Principles & Symmetries

= Universal principles are usually reflected as regularities
In measured observables. They can be expressed as scalings in different

representations of data.

= z-scaling of differential cross sections of inclusive particles
as a tool to study principles and symmetries that influence
production processes at constituent level.

= z-reprezentation of transverse momentum spectra based on principles of
= Self-similatity
= Fractality
= |ocality.
There exists a symmetry inherent to them:
Symmetry with respect to structural degrees of freedom

- structural relativity

M.V. Tokarev and I. Z.: in Investigation of Properties of Nuclear Matter at
High Temperatures and Baryon Densities

Dubna, Russia, 2007, edited by Sissakian, A.N. - Soifer, V.A,

ISBN 5-9530-0166-5, p. 99-136.
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Fundamental principles and symmetries

"Fundamental symmetry principles dictate basic laws of physics,
control structure of matter, and define the fundamental forces in Nature."
L.M. Lederman

Self-similarity - property of physical phenomena and the principle to construct theories.

Fractality - concept widely used in physics. .....non-integer dimensions,
fractal objects (some fractals posses property of self-similarity)
Multifractality - characterized by many non-integer dimensions

Universal principles: - reflected as regularities in measured observables.
- expressed as scalings in different representations of data.

“Scaling” and “Universality” were developed to understand critical phenomena.
Systems near phase transitions or a critical point (CP) exhibiting self-similar properties
are invariant under transformation of scale. The scaling is usually described by a power law.

Critical exponents in the power laws are defined by symmetry of interaction and dimension of space only.
The notions of scaling and universality have also been applied for particle production
far from a phase transition or a CP. The system should reveal discontinuity in some characteristics
describing its behavior nearby the phase boundary or CP.

H.Stanley, G.Barenblatt,...

XXIV ISHEPP 5
September 17-22, Dubna 2018



Self-similarity principle

Dropping of certain quantities out of description of physical picture
of a self-similar system.
Construction of self-similarity parameters as simple combinations
of suitable physical quantities.
Examples of self-similarity parameters:
Reynolds number Point explosion:
in hydrodynamics: [=r(Et?/p)~17>
R=Up/u r-radius of the front wave
U-velocity of the fluid E-energy of the explosion
p-density of the fluid t-elapsed time
u-viscosity of the fluid p-density of the environment
TN, L T ol

XXIV ISHEPP
September 17-22, Dubna 2018



Self-similarity in Inclusive Reactions

Differential cross section Ed3a/dp? for production of

an inclusive particle with mass m depends on:

1.  reaction characteristics (A, A,, Py, P,)

2.  particle characteristics (m, p, 0)

3. structural and dynamical characteristics (d, €, ..dN/dn..)
of the reaction M; + M, > m + X

The assumption of self-similarity of hadron interactions transforms to requirement
of simultaneous description of inclusive spectra by a scaling function w(z) .

Due to the property of self-similarity, it should be achieved by grouping suitable
characteristics of the inclusive process into a relevant self-similarity parameter z .

We search for a solution y(z)~ Ed3c/dp?®

reflecting self-similarity, locality, and fractality of hadron interactions
which depends in a universal way on an adequate, physically meaningful,
but still simple self-similarity variable z: 1 do

y(z)= No, dz
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Self-similarity types G.l. Barenblatt
yyp (1978)

l. type:
Self-similar solutions F_(a.,B,y,..) expressed via scaling function ®(I1,,IL,, ...)

depending on self-similarity parameters I1,(a.,B,y,..), IL(a.B,y,..) ...
(F., o, B, y — dimensional quantities; @, I, I1,— dimensionless functions)

V.S. Stavinsky (1972): cumulative particle production

F.(a, B,v) = Ed3c/dp3; a,B,y=p, 6, Ns

@ (IT) =exp (I1;/c); [1=1-x; Xq,X, - cumulative numbers
O(I1,) =exp (-I,/c);  TI,= V(X P;+X,P,)2/my

...but universality is broken by power asymptotic at high p; !!!

. type (intermediate asymptotics):
If ®©(I1,,I1,,..) does not converge but has power asymptotic for extreme I1,,I1,,..,

then self-similar solutions F; can be expressed via | y(z,...), z=1II,/Ik

A.M. Baldin (1998):

Hypothesis of self-similarity in Relativistic nuclear physics: 7 -9

... search for ®(I1,,I1,, ...) or eventually for y(z,...). '

...parameters have to be found from experiment. y(z) ="?
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(Functional) self-similarity of Il. type & variable z

Momentum fractions {X;, X,, Y., Yi}

~ (X, P1+X,P,)%-Zm,
]_/ZA/]_IO 1" 1 2" 2 . .
define constituent sub-process

Q — Q= (1—X1)81(1 X2)52(1_ya)8a(1_yb)8b m, inclgsive

particle

Z

II2

Z - self-similarity parameter of Il. type
- expressed via momentum fractions X;, Y,
- fractal measure <
Parameters = fractal dimensions: M, 8, — .

04,0, - structure of M,, M,
€, €, - fragmentation processes

() ~ relative number of all constituent configurations
containing the sub-process defined by {x,, X,, Y., Y,}

My, recoil
Q1 ~ resolution at which constituent sub-process particle
can be singled out of the inclusive reaction.

fractal property of z: z(Q) = if Q' (Xy—1)
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Fractality in Hadron Interactions

Final-state phase space in the high-energy and high-p limit is a fractal...
B. Andersson, P. Dahlquist, G. Gustafsson

QCD branching structure of parton cascades shows self-similar nature
and leads to QCD anomalous dimension of the phase space....

M.l. Dremin, B.B. Levtchenko

...to see fractality of phase-space experimentally, important role of energy and
entropy distributions was emphasized.... J.D. Bjorken

Evidences of fractality in high energy physics:
- Intermittency of spectra of secondary particles

A. Bialas, R. Peshanski, M.I. Dremin, W. Kittel.....

- fractality of the emitting source O.V. Utyuzh, G. Wilk, Z. Wlodarczyk
- fractal structure of thermodynamic functions A. Deppman,...
- fractal structure of proton T. Lastovicka
- and others...
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Fractality of Hadron Constituents

Collisions of hadrons and nuclei at high energies are assumed as collisions of
hadron constituents - objects with inexhaustible (parton) structure
at small scales.

We consider hadrons and nuclei as extended objects which have

fractal properties with respect to increasing resolution
concerning the parton content involved.

(Objects consisting of “subtle nets” of quarks, anti-quarks and gluons
which emit other (anti)quarks and gluons at small scales and
those in turn generate particles of the same sort at even smaller scales etc. ).

Assumption:

Hadron constituent sub-structure does not exhaust
with increasing resolution.
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Variable z & minimal resolution Q1 M, Inclusive particle

with momentum p
Gross features of the single particle distributions
M;+M, = m + X

in terms of the constituent sub-process
(Locality of hadron interactions) M,, 8,

(X M) + (X,M, ) = (M 1y,) + (XM +x,M,+myly,)

(™) (PP, —ply,)? = (XM +X,M,+myfy, )2

—(1_ (1 _ 5 (1 _ (1 _ &
Q — (1 Xl) (1 X2) (1 ya) (1 yb) - recoil
Q - relative No. of constituent configurations which particle M,
contain a sub-process defined by X;, X5, Y., Y,
Fractality: 64,0,, €,, €, - fractal dimensions
Z - fractal measure X, X,, Y,, Y, >1 Q> -—>00 z-—>w

Z= ZOQr_ntx Q- min. resolution w.r.t. all sub-processes satisfying (*)
ey . I.t.

1/2
SJ_

Z:
Wonge | Wiy = (ANgfn| )°-Q o WX, %,y ¥o) = AN 077 )6 - Q%0 %, Yo ¥)

1/2 _ :
S | - transverse kinetic energy consumed on production of m, & m,
W - relative No. of all configurations which can lead to production of m, & m,
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1/2

1/2 C
Variable Z—W & Energy s’ wmaxz(chh/dn\o) Q.
5112 - transverse kinetic energy M, Inclusive particle

consumed on production of m, & m,

s =T +T,

T,=Y, (\/Q—MIXI—MZM) —m, M,, 3, :< X,

with momentum p
Tb =Y (\/S_X_M1X1_M2X2) —

« X>: M2,82
Sx:(}‘lple;‘sz)z SX:(X1P1+X2P2)2 recoll

particle M, with momentum p

Ta = \f p'zr +m§ —m, Tb = \IE)'ZI' +m§ —m, pT/ya — pT/yb

Constituent sub-process:
(A t0) + (R t,) = (A th,) + () X =A
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Scale transformation of z & y(z)

Scaling variable: Scaling function:
gl/2 1 do
z= "+ z)= Z'=2I\W, y'(z")=W,y(z
W v(z) No, dz o V(Z) W(2)

W, - absolute number of constituent configurations
(drops out of the z-scaling).
W,=W,(F) - depends on type (F) of the inclusive particle (m).

Scaling functions for different hadrons collapse
to a single curve using the transformation

Z>0.2 Yooy
o =Wy (F)/Wy(m) for the corresponding particle type (F)

The transformation preserves the normalization jw(z)dz =1
0
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z-scaling in pp Collisions at RHIC
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FNAL ISR: STAR:

> Energy & angular independence

> Flavor independence
> Saturation for z < 0.1

> Power law Y¥(z)~zP for high z > 4

PRD 19 (1979) 764
NPB 100 (1975) 237
NPB 106 (1976) 1
PLB 64 (1976) 111
NPB 116 (1976) 77
NPB 56 (1973) 333
PRD 40 (1989) 2777
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Fractal self-similarity of hadron interactions

Numerous analyses of inclusive reactions show that
production cross sections of inclusive particles can be described
by a universal scaling form using data z-presentation

z-scaling reflects principles of locality, self-similarity, and fractality

Locality: collisions of hadrons and nuclei
are considered as local interactions of their constituents

Self-similarity: interactions of the constituents are mutually similar.

Fractality: self-similarity of the interactions over a wide scale range.
(relative number of configurations depends on fractal dimensions)
Assumption of fractal self-similarity of hadron interactions includes a new symmetry
motivated by basic property of QCD diagrams:
(g, G, g) can emit other (g, g, g) at small scales and those can generate particles
of the same sort at even smaller scale etc....

There should exist conservation of a scale dependent quantity
characterizing hadron interactions at a constituent level
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Variable z & Entropy S

1/2 C .
,_ S W =(dN ch/dn‘o) Q- Scale transform:
max O 9y 5 & Z = Z/WO
Q=(1-x)*(1-x,)*(1-y,)*(1-y,) S, .=INW__-HnW,
Entropy: Thermodynamical: Statistical: |S = InW +In'W,
S=c,InNT + RINVV + const.
s N ~ / e N
S =c-In(dN/dn|,) + In[(1-x,) ™ (1-x,) ™ (1=y, )" (1=y,) ] + InW,
= dN/dn|, characterizes “temperature” of the colliding system.
= |ocal equilibrium dN/dn|,~T23 (for high T and small )
= C - “specific heat” of the produced medium.
" 3, 0,, &, &, — fractal dimensions in space of momentum fractions {X;,X5,Y.,Yp}

Entropy S increases with dN/dn|, and decreases with increasing resolution Q-1

Max. entropy S(X;,X,,Y.:Y,) < Max. number of configurations W(X,,X,,Y.,Y;,)

under condition: (X,P;+x,P,—ply.)? = (x,M;+x,M,+m,/y,)? Q.. Z
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Maximum entropy principle with a kinematic constraint

Entropy S,:
So (X, %, Yo, Yy ) = INQ(X, %5, Y,, Y, )+ 1IN,
Q=(1-x)"(1-%,)*(1-y,)*(1-y,)"

Kinematic constraint:
KV

_ 2 = 2 _ i _ (PJ p)
(X1P1+X,Po—ply,)” = (X M +X,M,+myly,) 4 —y_a+y_b ST (RR) - MM,

XX, = XAy = XA -4y =0 A Ve, MM,
i ys yj | (Plpz)_Mle
2
i =12 v, =M

Maximization of the functional o (RR)-MM,

D (XX, YY) =Q(X1,X5, Va1 V) + B (XXX A, XA -A)
with a Lagrange multiplicator 3.
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Invariant combinations of momentum fractions

Conditions for maximal Entropy S:

8CD 0,Q) od 0,Q)
ox, 1-x 2~ %) ox, 1- A - A)=

oD Q X, X, 2
oy, 1-vy, ya ya ya Y, 1-y, Yb Yy Yy

D (X, Xy, Var Vo) = (X0 X5, Var Vo) + BXK - XA, - X0, - Ay)
Kinematic constraint: XX, - XA, - X,4, -4, =0

O, n 9,%, =§[(Xz_/12)x1]+g[(x - ] 'B [ XX, + 4, ]

1-x, 1-X,
e,y &Yy, B B
a-4 =—|AX X, + 24, | = =| XX, +
-y, 1-y, sngl+212+ o] g2[12 gl

2 i 0%, _ &Ya + oY
1-x, 1-X, - Y, 1—yb
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A conservation law from maximum entropy

M, Inclusive particle
with momentum p

Max. Entropy 82:0 ai):o ai)=O ai):0
OX, OX, ay, Y,
Solution (numerical only): .
X1:X1(P1!P21p1511521‘9a’gb) 1;:[1’81 :<X1 i ) X2>: M2’82
P
X, =%, (P,P P, 8,,6,.&,,5,) : 2
ya — ya(Pl’ F)2’ p’51’52’8a’8b)
Yy = yb(Pl’ P, p’51’52"9a’gb)
recoil
particle My,
. 51)(1 52 X2 _ ga ya gb yb
Conservation law: + = +
1-x 1-x 1-y, 1-y,

forarbitrary B,PR,, p,d,,9,,&,, &, 1!

Conserved quantity:

C(O=Dg® g(0) ===

1-C
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The conserved guantity C({)

C(O)= D5 D(=3,, 8,, &, &,) — fractal dimension
1-G C(=X1, X3, Ya» Yp) — Momentum fraction

C(&) characterizes:
- property of a fractal-like object (or fractal-like process) with fractal dimension D

to form a ““structural aggregate” with certain degree of local compactness
which carries the momentum fraction C.

- ability of the fractal systems to create (structural) constituents

- cumulative property of internal structure of the colliding hadrons/nuclel

- aggregation property of fragmentation processes

C(C) is proportional to fractal dimension D of the respective fractal system.
The larger momentum fraction ¢ carries a structural constituent

(or an aggregated part) of the fractal-like system, the larger value of C(() it has.

C(&) — “cumulativity” (“fractal cumulativity™)
of a fractal-like structure with fractal dimension D

carried by its constituent with the momentum fraction
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Composition rule for cumulativity C(C)

C(O=Dg(©)

00)--2

C(E)=CO+C(E)+DCOCW)

1-G

9"=90+0+09'| |(1-¢=01-)-<¢

Composition rule for C(&) leads to g-exponential type of the distributions
of the Tsallis-Pareto form with non-extensivity parameter g-1~1/D

- Property typical for fractals with a fractal dimension D
- Associative property

- Different € .... different levels of resolution
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Cumulativity C(£) & Energy E(3)

¢ 1
C(()=D =— E(B)=M =
(O=Dg(0) g(©) 1 B)=My(B) v(B) \/1?
£ — momentum fraction B — velocity fraction
D — fractal dimension M — mass

Conservation law:

51)(1 + 52)(2 _ gaya + gbyb

I\/Il MZ — Ma Mb
1-x 1-x, 1-y, 1-y, x/l—ﬂlﬁx/l—ﬁf \/1—ﬂ§+x/1—ﬂ§

Composition rule:

g"=g+09'+9g’ 7/"=\/7/2—1\/7'2—1+7/7/'
1-¢")=12-8)1-2) 1-4") _QA-5) 1-5)

| 1+ @+8) 1+5)
semigroup. 0<g' <1 Lorentz group: —1< S <1
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Cumulativity C(£) & Energy E(3)

Analogies: 1
C(8)=Dg(©) g(C):L : EB=My(PB) v(B)= -
1-C «/1-[3
C(C) — depends on resolution dependent E(B) — depends on motion dependent
reference system {P,,P,,p} inertial system {V,,V,,V,}
(State of resolution) My, P (State of motion)

Photon (M=0):
M=0 — B=1, but E(1) is finite

Non-structural objects (D=0):
D=0 — =1, but C(1) is finite

P1M1961 X2>: M2,52 P2
] recoll
Differences: particle m,,
C(&) - relativistic invariant w.r.t. motion |:> Conservation law
scale of £ — is not absolute C.(x)+C,(x,)=C,(y,)+C,(y,)
D — can depend on other characteristics... does not depend on motion !!

(It depends only on resolution.)
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Quantization of fractal
dimensions
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Quantization of fractal dimensions 6,, 9,, €,, €,

S,=InQ+InQ, Q=(1-x)"1-x,)*1-y,)=(1-y,)* 0)
P
_ J

(X;P1+X,P—ply,)? = (X My +X,Mp+myfy, ) a5 Y 7 (PR)-MM,

N— —— o i ya yb Mjmb
XXXy XAy -Ag =0 J=t Ve e (RP)-MM,

2 2

yb ya 0 5m2

Maximum of the functional L]=12 v, = CG ')_ Y

O (Xl’XZ ) ya Vo) =Q (X1 X0, Yo Vo) + B XX A, XA -Ag)

GCD 8CD 0.0
X, — 0 =+ L(x,—4)=0
T )= = A
oD Q X, X, 2
82_ AL +,B[K2 X2+K‘1 Xz—va%j—o A +ﬂ[v2 —+V,—=+V, 3}:O
oy, 1-vy, Y, Y, Y, oY, 1-vy, Yy Yy Yy

Quantization of §,, d,, €,, g, manifests itself most prominently near fractal limit

|:> find the solution in the region Xy, X,, Y,, ¥, =1 and
write down explicit expression for entropy S, in the fractal limit
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Conditions for momentum fractions from max. entropy

Constrained od oD L) oD

- —=0 —=0 —=0 —=0 XX -XA -XA-4,=0
maX|mu.m for o%, ox, . o, 172 1ﬂz 2ﬂ1 ﬂo
entropy:

Fl(xl’XZ'ya’yb’Kl’KZ)EX1X2_KZﬁ_Klﬁ_VZﬁ_VlX2 Vbiz+v 12 0

ya ya yb yb yb ya

X, X |[(1-x) X, % [(1-x,)
F, (X, %, Y., Yoo Ko K s{xx—x Ly 1} { X, —K,—%—V 2} =0
2(1 2 h1™1 2) 17%2 Zya Zyb 51)(1 X12 1ya 1yb

-1 -1
ga ya + gb yb _ 51)(1 + 52 X2 — O
1-y, 1=y, I-x 1-x

GZ(Xl’XZ’ya’yb)E|:V2X1+V1 X2 n 2Vb:|(1_ yb) —|:X1X2 _Vzﬁ_vl X2 _ Va Vb :|(1 ya) :O

G, (X, %1 Y21 Ys)

2

yb yb ya yb

Solution: X, =X, (Kl,KZ) X, =X, (’fl,’fz) Ya=Ya (Kl’KZ) Yo = Yo (Kl’KZ)
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Conditions for momentum fractions near fractal limit

Fractal limit (L): X;=X,=y,=Y, =1
Conditions for momentum fractions in the region X;, X,, ¥, ¥, 21

ok oF oF oF oF oF
1-x 1- 1- 1- — -x,|=0
ax ( ) axz L( X) . L( ya) ayb L( yb) a 1L(K K)+8K2 L(KZ KZ)
oG, oG, oG, oG,
I-x)+— (1-%)+— (1-y,)+— (1-y,)=0
o )+ 52 (o) + 52 (1)« 8 (-,

&= (A+0)(1- %) +(A+ 4 (1= %)+ (L-V)(1-V.) +(v+ & )(1- V)
= 0=0"(h+4) (1-x)+& (B +%) (1-x) =& (1-v) (1-v.)-&"(v+ %) (1-,)
0=-5 (A +4)(1-%)+ 84 +4)(L-x,)
0:5;1(1—v)(1—ya)—ggl(vm_o)(l—yb)

where: e +e, =« +x,+Vv,+Vv,+ 4, Over-lined symbols calculated at fractal limit (L)
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Momentum fractions near fractal limit z(Q) >« Q-0 (x,y—1)

Maximum entropy principle |:> solution in the region X;, X,, V,, ¥, =1

(1—61—62) 51 _ (1_61_62) €a

1—x ==&~ oy -

% (ﬂl+/10) (0, +6,+&,+&,) Ya (1-v) (6,+6,+&,+¢&,)
1% - (1-e-8) 5, gy - (1-€—8) &

(ﬂz'l'ﬂo) (51+52+ga+8b) (V+/10) (51+52+ga+€b)

Over-lined symbols calculated at kinematic limit
(M,+M,)m, +0.5(mZ+m; )

_ (P,p)+M,m,
- = V=V, +V,+V, +V, =
ﬂl K1+V1 (PP) M M 1 2 b (P].PZ)_M]-MZ
. Pp)+Mm, _ 0.5(m?-m?
12=K2+V2—( p) Ay =V, =V, = ( d a)
(P1P2) (Plpz)_Mle

€ +€, =K, +i, +V, +V, + 1, = (Plp)+(P2p)+(Ml+M2)mb + 1, —1
(P1P2)_M1M2

Substitute the solution into the expression: Q= (1-x,)*(1-x,)?(1-y,)*(1-y,)®
to obtain value of maximal entropy S, =InQ+InQ,
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Entropy S, near fractal limit z(Q)—»>wo (x,y—>1)
Maximum entropy principle: /

I:> S, = (040, +¢,+¢, ) In(l-e-¢,) +InQy — (S,
—4,In (ZML_O) —&,In (ZMTO) —&,In(I) —¢, In (VMTO)

note minus sign

a

Sp = (640,46, ) In(6+0,4¢,+,) —6In 6, — 5,In S, —¢,Ine, —¢, In¢g,

Entropy S, depends solely on fractal dimensions

&g ) &, ¢
Srzé{(qugjln(qugj—glng} 0=0,+0, &=¢,+¢,

+0, 1+i In 1+i —ilné
B 51 51 51 51

& & | &, €
+&,[|1+2|In|1+2 |- =2In2
& £, ) & €

a a a a
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Sr- - entropy of a statistical ensemble

m, inclusive
particle

X
. >: MZ? 82

Statistical ensemble of the interacting fractal configurations:

Large collection of the interacting fractals
- with random configurations {X;, X, Y., Yp ---3 and
- with the same fractal dimensions {9, 6,, €, &, M.. 3,

N5, - configurations of internal structure of M,
N5, - configurations of internal structure of M,
n., - configurations of fragmentation process to m,

N, - configurations of fragmentation process to m, recoil

particle My,

Entropy S of a single “average” fractal configuration of the system:
52

S'(E}LS'(?}S'(%) S, =d[(1+r)In(l+r)—rinr]| &=6+65, e=¢+5

1 a

Entropy of the whole statistical ensemble:

g 0. g
Sy =n;S, (gj +NyS, (fj +n,,35, (g_b] Ns =N + Ny,
1 a
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Quantization of fractal dimensions 6,, d,, €,, &,

The expression

for the entropy Sy

g 0. g
Sr = n5S| (gj + n51S| [gzj + ngasl (g_bj
1 a

S, =d[(1+r)In(1+r)—rinr]

allows to draw physical consequences provided
the fractal dimensions have quantum nature:

=

élzd'nal 52:d'n52 51:d'nga gb:d'ngb

5=6.+5,

E=¢g,+¢,

Ns =Ngs + Ny,
ns = nga + ngb

Sr — n5S| (

N n N
_gj+n5lsl [ 52j+ngasl (
Ns Nsq n

cb

ga

)

S can be interpreted as the logarithm of number of ways
In which fractal dimensions of the interacting fractal structures
can be composed from the identical dimensional quanta, each of the size d.
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Statistical interpretation of the entropy S

The entropy | S. =n,S, [&j + NS, [n

né'l

Ns

o2

as logarithm of the number of different ways
how identical dimensional quanta can be shared
among fractal dimensions of the interacting fractal structures.

n=n,+n, - overall number of dimensional guanta each of the size d distributed
between n; =ny, +n,, quanta of fractal dimensions in the initial state

and n,=n_+n, quanta of fractal dimensions in the final state
Different arrangements of such distributions:

r (n5+n5)! T _ (n51+n52)! _ (n5a+ngb)!
- 5.8, farsy
o n,g n| e ng! ng b n_!n,!
S.=dIn(I" r _ _ (n51+n51+nga+ngb)!
r 81,0,€a,8p 01,00,62,8

Fé’,gré‘l,é’z Fga,gb _

ng!ng,In_In, !

for large Ny, Ns, Ny Ny and Innl=ninn—n  this gives (*)

XXIV ISHEPP
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nga ng = nga + ngb

S, =d[(1+r)In(1+r)—rinr]
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Conservation of the number of quanta of fractal cumulativity C(&)

Quantization of fractal dimensions D=d-n results in

quantum character of fractal cumulativity C(C): C(®)=D fg

Conservation law for the fractal cumulativity
In units of dimensional quantum d :

N5 % n N52%; — N.aYa 4 Ny Y
1-x 1-x, 1-y, 1-y,

The number of quanta of fractal cumulativity is conserved
at any resolution given by arbitrary momenta P,, P,, and p
of the colliding and inclusive particles.

The quantization is based on assumption of

- fractal self-similarity of internal hadron structure,

- fractal nature of fragmentation processes, and

- locality of hadron interactions at a constituent level
up to the kinematic limit.
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Symmetric reactions:

For a symmetric inclusive reaction consider M=M.=M m=m=m g =90

) g
51:5255 812825—

2
Entropy S,, near fractal limit z(Q) — o, Q"> 0 (x,y > 1) :
S, = (5+g)ln(1—e1—e2)+ InQ, e +e, = 2E\/§+4TM
s—4M
—5{(1+§jln 1+%) —%In%} E — energy of inclusive particle
2 2
- 02) & 02 p; =s—4(M+m)
——n| I+ — |-=In| I-— ) 5
P; 2 P pi =S—4M
o=d-n; e=d-n

&

Conservation of cumulativity: | 2 5y gy gy
1-X 1- ya 1- yb
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Epilogue

z-Scaling is a specific feature of high-p-. particle production established
in p-(anti)p collisions at the U70, ISR, SppS, Tevatron and RHIC.

It reflects self-similarity, locality, and fractality of hadron interactions
at a constituent level.

The scaling behavior was confirmed also for inclusive production of
direct photons, jets, heavy quarkonia and top quark.

Hypothesis of self-similarity and fractality was tested in AA collisions
using z-presentation of spectra of charged hadrons and pions.

Analysis of numerous experimental data indicates universality as well as
energy and multiplicity independence of the scaling function (z).

The variable z depends on multiplicity density, “heat capacity”,
and entropy of constituent configurations of the interacting system.

We present new insight into some aspects of the theory of z-scaling
and show what kind of physics can stand behind it

and what type of physical problems could be addressed by this approach.
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Summary

Based on principles of self-similarity, locality, and fractality of hadron interactions
at constituent level, we demonstrated that z-scaling construction reflects
conservation of new quantity, named here “cumulativity” (or fractal cumulativity)

The conservation law follows from general ideas. It holds at any level of resolution

given by arbitrary momenta and masses of the colliding objects and
arbitrary momenta and types of the inclusive particles.

According to the Noether’s theorem, there must be a continuous symmetry,
a scale dependent translation symmetry, o
which guaranties the conservation law for the fractal cumulativity.

The cumulativity C(C) is subject to a composition rule connecting C(£)

at different scales. It leads to distributions of the Tsallis-Pareto type
with non-extensivity parameters depending on fractal dimensions.

It was demonstrated that fractal dimensions can be interpreted as quantities
which have quantum nature.

It was shown that the quantization of fractal dimensions
results in preservation of the number of quanta of fractal cumulativity.

XXIV ISHEPP 37
September 17-22, Dubna 2018



Further motivation:

Structural relativity:
symmetry at small scales
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Momentum fractions Xy, X,, Y., Y

S=c-In(dN/dn| ) +1nQ + InW, | (XP1+XPy=ply,)? = O MHXMy+myfy,)?

Maximal entropy S = maximum of () = (1_X1)51(1_X2)52 (1_ya)8a (1_yb)8b

Xi :xi_l_Xi Q:Qmax

—

(Pa) qy+q,

3 Xi=mirol Fo, o =pU

|12

""(PP)  s/2

U =2te  a=5,5, 0<&<l

W, & are simple functions of A, and A,

Q... 1S calculated numerically
for every momentum p of inclusive particle.
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Fractal self-similarity and Structural relativity

Maximal entropy: X =\ +.
P. —
= i) Xi:\/uiz_l_(’oiz_l_@i o; = U
(F.P,)
o—1
u - structural “velocity” U(E) = T{; a=0,/0, 0<ELL
u U() = a—1 2N 3,, 8, — fractal dimensions
/1_ u> =U)= 2\/6 : & — characterizes resolution
Lorentz transform: = \/ M
. - (1_7‘1)(1 _7‘1)
1
ke = (i) —u i) | Momentum fractions
1 w.r.t. fractal structures of A, B:
— _ . — —B
XitXo = W[(“1+Hz) U—(lvll Hz)] _ (PJqA) ) (PJq )

Xi Hi =
- | P,P
X, = 1, # function(u) (PP,) (PP,)
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“Structural velocity” u at small scales

Momentum fractions: X, =A, +%, X, =A, +%,

Xi :\/Hiz_'_@izmi o; = ;U

u a—1 - u a—1
— U(E) = & — 1 at fractal limit —
J1-u? © Z«EQ 1-u2 2Ja
o =0,/0,, ‘35\/ A, ~ (ij) U= o-1
0<&<1 (I-A)(A=%) " (PPR,) a+1
u'+u" . _ L
U= — a=oa at fractal (kinematic) limit
1+u'u

Relativistic composition of “structural velocities” U IS given by
multiplicative composition of ratios of fractal dimensions &;.

XXIV ISHEPP 41
September 17-22, Dubna 2018



vV VYV

Outlook and further motivation

Ratio of fractal dimensions a=0,/9, determines magnitude of the quantity U(&)
which 1s “4-velocity parameter” in elementary equations of structural relativity.

The quantization of &, and 9,

is associated with quantization of the “structural velocity” U(&)

and results in quantum character of the structural relativity.

The asymptotic values of U({—1) (region near fractal limit) can be connected

with induced anisotropy of 4-momentum space at small distances which,
due to the quantum character of 5, # 3,, should be quantized as well.

The quantization concerns metric changes connected with “structural velocity” U(E).

We consider that quantum nature of fractal dimensions has connection to

quantization of metric structures at small distances
and motivates us to further study in this direction ..

The z-scaling approach can be an effective tool to search for and study of
new symmetries, conservation laws and quantum properties of
hadron structure and fragmentation processes especially at small distances.

The measurements of particle spectra with high p; at the energies of the future
accelerators FAIR (GSI) and NICA (JINR) will be extremely suitable for studying
the regime of large fractal cumulativities and can contribute to verification of

quantum nature of fractality in the interactions of hadrons and nuclei.
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Back-up slides
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Similarity, self-similarity, fractality

1. Two geometrical objects are called similar if one is the result of
a uniform scaling (enlarging or shrinking) of the other.

2. Object is called self-similar if it is composed of parts similar
to it as a whole.

3. Object is called (self) similar fractal, if it consists of parts like
him as a whole on any scale.

. _ Fractal
Similar objects Self-similar
. object
) .
@
D=2,D;=2
D=In8/In3~1.89, D=1
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Example of a Fractal Curve
p=4, q=3

> < Curve length is a measure
M attributed to the fractal curve
Swedish mathematici
i b el o Kbch m 2(¢)| .-

& ” resolution

+
+ D= Ln(p)/ Ln(q) fractal dimension
+
+

+ =1 topological dimension

=D—D; anomalous fractal dimension

XXIV ISHEPP 46
September 17-22, Dubna 2018



