

Recent developments in particle yield fluctuation measurements

Igor Altsybeev St.Petersburg State University

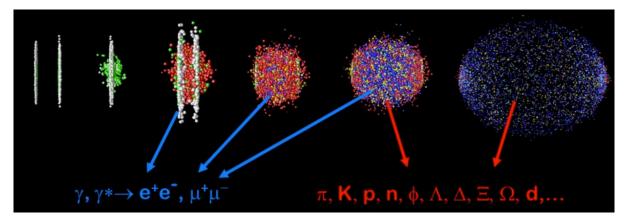
XXIV Baldin ISHEPP Dubna, Russia September 17, 2018

What do we mean by "fluctuation measurements"

Many "event-averaged" observables can be studied:

particle yields, spectra, flow harmonics, two-particle correlations...

Fluctuation measurements:


when a given observable is measured on *an event-by-event basis,* and the fluctuations are studied over the ensemble of the events.

• fluctuating net-charge, number of protons, mean- p_{T} , forward-backward yields, etc.

Why e-by-e fluctuations:

- they help to characterize the properties of the "bulk" of the system
- fluctuations also are closely related to dynamics of the phase transitions

→ A non-monotonic behaviour with experimentally varied parameter such as the collision energy, centrality, system size, rapidity

Igor Altsybeev, Recent developments in particle yield fluctuation measurements

What do we want from observables?

Usually we want to have an observable which is (1) sensitive to some particular physics phenomena and (2) insensitive to other.

E-by-e analyses are much more sensitive to different biases (than "event-averaged" observables). "A long list" of troubles:

- non-flat efficiency, its dependence on multiplicity
- contamination by secondary particles
- detector acceptance
- conservation laws
- resonance decays
- trivial fluctuations of collision geometry ("volume fluctuations")

What do we want from observables?

Usually we want to have an observable which is (1) sensitive to some particular physics phenomena and (2) insensitive to other.

E-by-e analyses are much more sensitive to different biases (than "event-averaged" observables). "A long list" of troubles:

- non-flat efficiency, its dependence on multiplicity
- contamination by secondary particles
- detector acceptance
- conservation laws
- resonance decays
- trivial fluctuations of collision geometry ("volume fluctuations")

Our experience teaches: it's not enough just to define an arbitrary observable:

- need to know how robust it is in a real experiment
 - provide a correction procedure if needed

In this talk:

- some observables will be discussed (properties, experimental results)
- new fluctuation observables are introduced

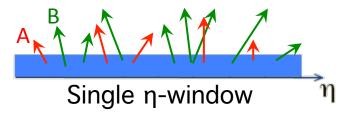
1 Measures for <u>multiplicity</u> fluctuations: the v_{dyn} observable

Particle number fluctuations can be quantified by:

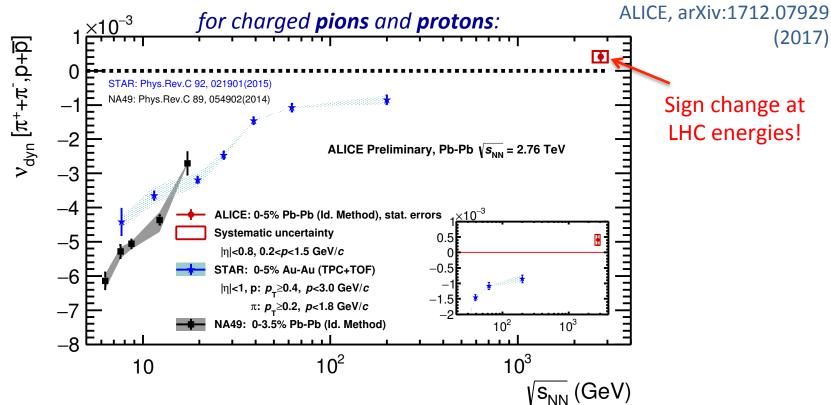
- Variance an extensive observable, "bad"
- Scaled variance intensive, but affected by "volume fluctuations"
- Observables which are robust to "volume fluctuations"

Take particle number ratio:

$$R = n_A / n_B \implies \nu \equiv \frac{\langle \Delta R^2 \rangle}{\langle R \rangle^2} = \left\langle \left(\frac{n_A}{\langle n_A \rangle} - \frac{n_B}{\langle n_B \rangle} \right)^2 \right\rangle$$


In case of Poissonian particle production:

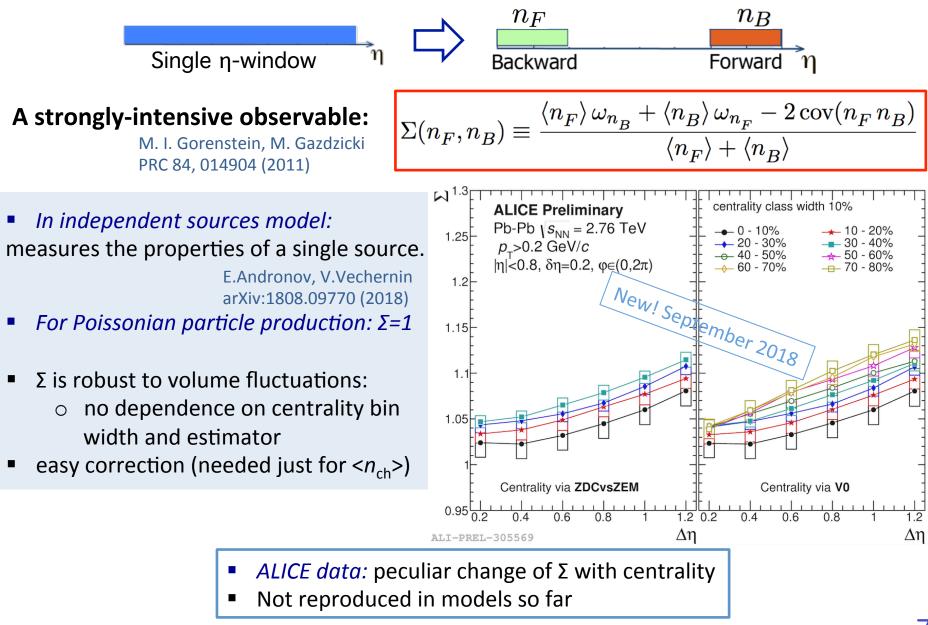
$$u_{stat} = rac{1}{\langle n_A
angle} + rac{1}{\langle n_B
angle} , \quad
u_{dyn} =
u -
u_{stat}$$


$$\nu_{dyn} \!=\! \frac{\langle n_A(n_A\!-\!1)\rangle}{\langle n_A\rangle^2} \!+\! \frac{\langle n_B(n_B\!-\!1)\rangle}{\langle n_A\rangle^2} \!-\! 2\frac{\langle n_An_B\rangle}{\langle n_A\rangle\langle n_B\rangle}$$

Pruneau, Voloshin, Gavin Phys.Rev. C66 (2002) 044904

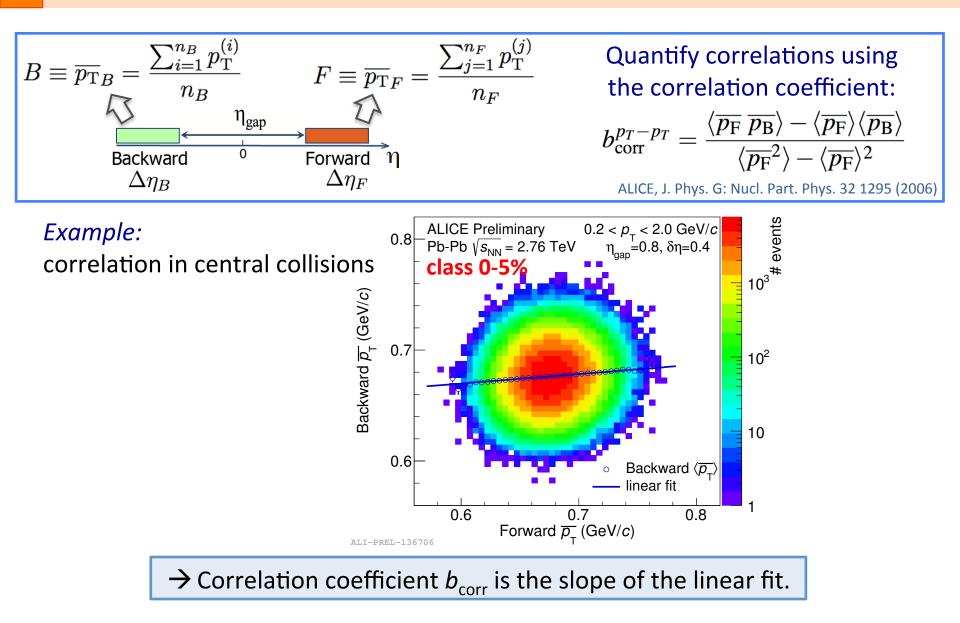
- Measures deviations from Poissonian behaviour
- Correlations between particles A, B
- Robust against efficiency losses
- Is a single-window observable

1 Multiplicity fluctuations with v_{dyn} at different energies

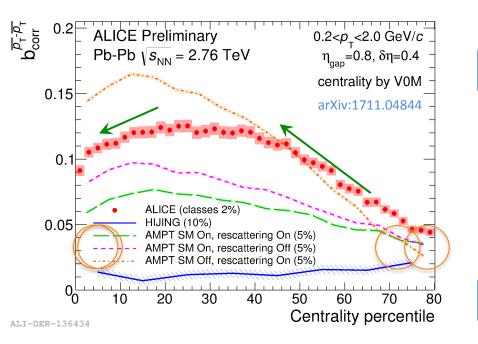


ALI-PREL-96311

- Sign change! But it is seen also in the URQMD and HSD where there are no quark-gluon degrees of freedom
 - \rightarrow String and resonance dynamics used in the models?
- \rightarrow No sign of critical behavior so far...
- Acceptance coverage is crucial, also resonance contributions should be better understood


Igor Altsybeev, Recent developments in particle yield fluctuation measurements

2 Forward-backward <u>multiplicity</u> fluctuations with Σ

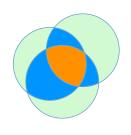


Igor Altsybeev, Recent developments in particle yield fluctuation measurements

3 Not only FB *multiplicity* correlations – can take *mean* p_{τ} !


3 FB *mean-p_T* correlations: data and the interpretation

Correlation strength:


- robust to volume fluctuations!
- rises from peripheral to mid-central
- drops towards central collisions

What can cause mean- p_{T} FB correlations?

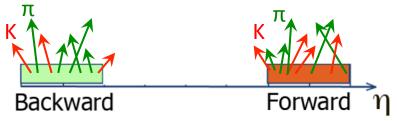
String fusion model

Nucl. Phys. B 390 542–558 (1993)

Phys. Rev. C 96, 014904 (2017)

 strings overlap
 → modification of string tension
 → increased p_T of particles from the fused strings
 Monte Carlo realization: arXiv:1308.6618

- Mean-p_T correlations are sensitive to the properties of the initial state.
 - Non-trivial to explain the centrality trend of mean-p_T correlations.


4 FB correlations between ratios of particle yields

Definition:

take ratios r^{F} and r^{B} of particle yields in F and B windows event-by-event and define *a correlation strength* as:

$$b_{\rm corr} \!=\! \frac{\langle r^F \!\cdot\! r^B \rangle}{\langle r^F \rangle \langle r^B \rangle} \!-\! 1$$

Example: kaon-to-pion ratio $r = n_K / n_\pi$.

Some properties:

- if independent particle production $\rightarrow b_{corr} = 0$
- if only short-range effects (decays, jets) suppressed at large η_{gap} → b_{corr} = 0
 not the case for the "classical" ν_{dyn}!

4 FB correlations between ratios of particle yields

Definition:

take ratios r^{F} and r^{B} of particle yields in F and B windows event-by-event and define *a correlation strength* as:

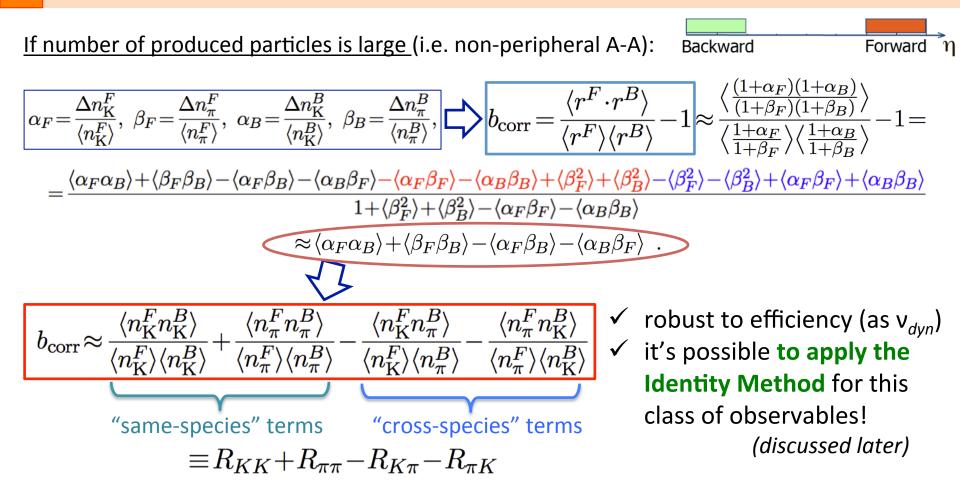
$$b_{
m corr} \!=\! rac{\langle r^F \!\cdot\! r^B
angle}{\langle r^F
angle \langle r^B
angle} \!-\! 1$$

Example: kaon-to-pion ratio $r = n_K / n_\pi$.

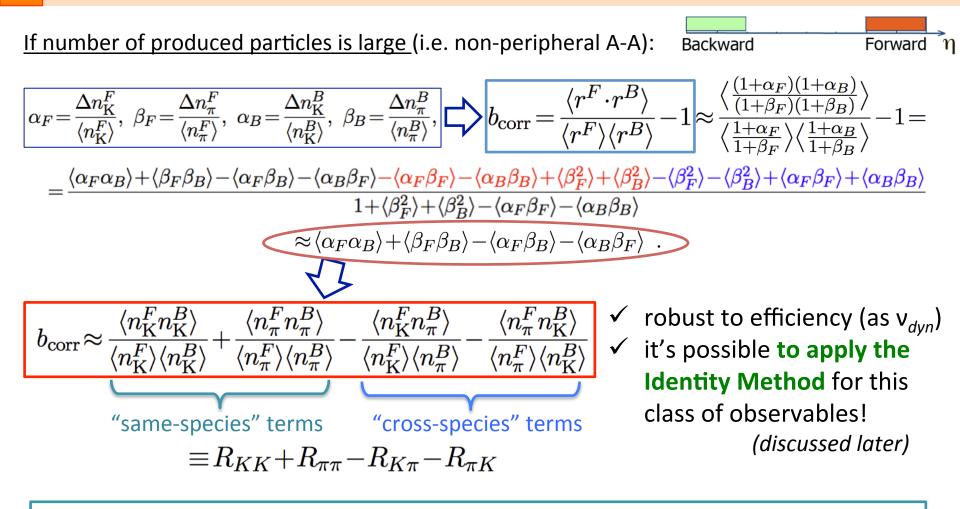
Backward Forward η

Some properties:

- if independent particle production $\rightarrow b_{corr} = 0$
- if only short-range effects (decays, jets) suppressed at large η_{gap} → b_{corr} = 0
 not the case for the "classical" v_{dyn}!

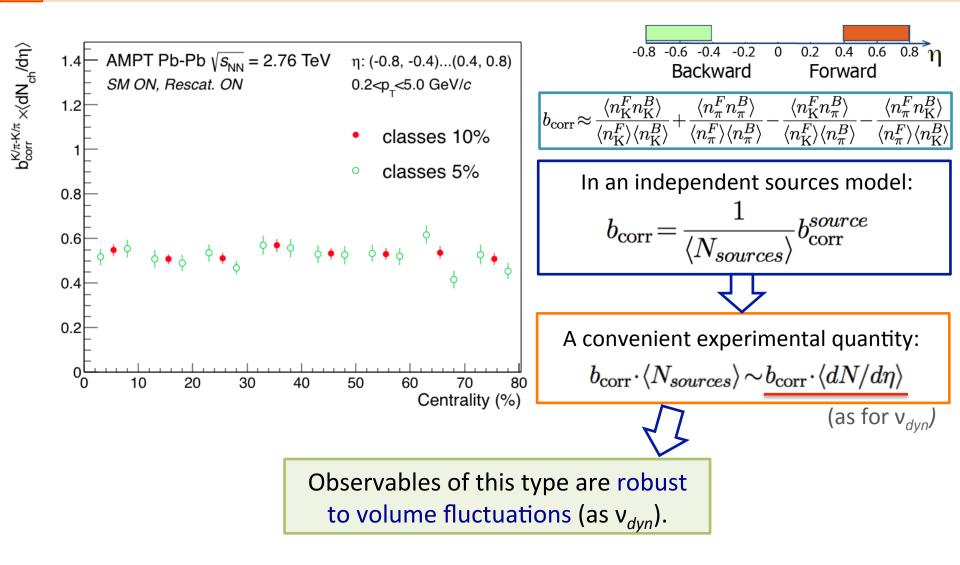

Physics case of interest:

correlations between strangeness production at large η gaps (string interactions, thermal models, ...)

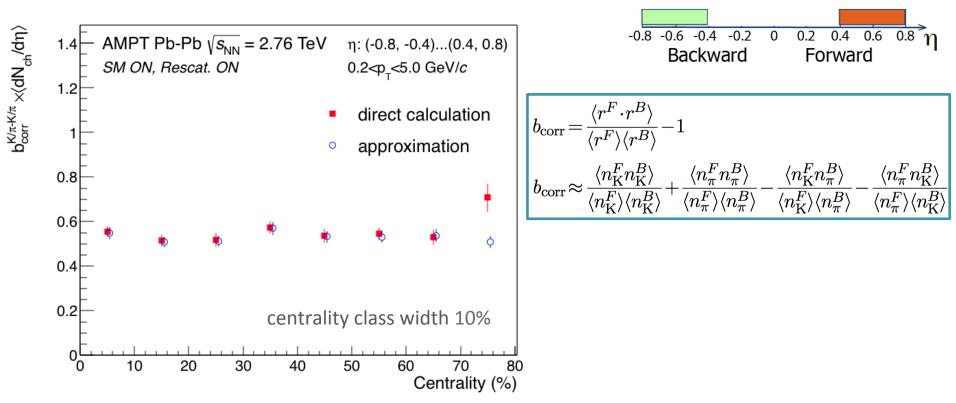

Approximation for the correlation strength

If number of produced particles is large (i.e. non-peripheral A-A): Backward Forward η $\alpha_F = \frac{\Delta n_{\rm K}^F}{\langle n_{\rm K}^F \rangle}, \ \beta_F = \frac{\Delta n_{\pi}^F}{\langle n_{\pi}^F \rangle}, \ \alpha_B = \frac{\Delta n_{\rm K}^B}{\langle n_{\rm K}^B \rangle}, \ \beta_B = \frac{\Delta n_{\pi}^B}{\langle n_{\pi}^B \rangle}, \ \Box \qquad b_{\rm corr} = \frac{\langle r^F \cdot r^B \rangle}{\langle r^F \rangle \langle r^B \rangle} - 1 \approx ?$

Approximation for the correlation strength

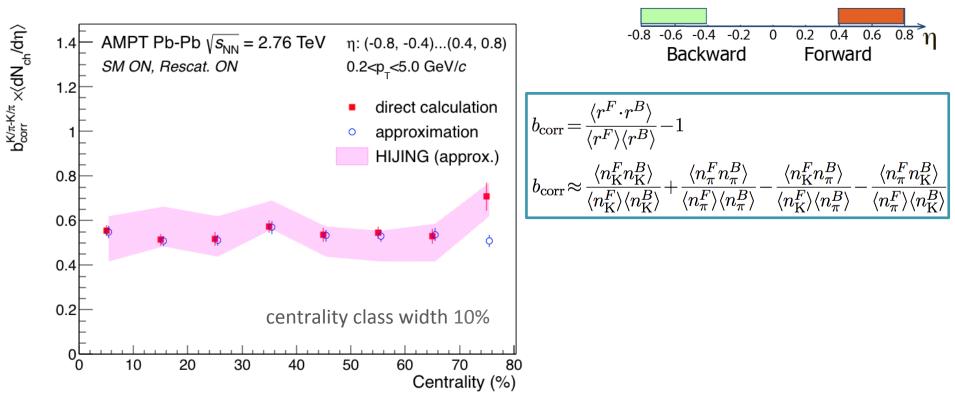


Approximation for the correlation strength



Note: we can recognize a similar "structure" of the observable as in the balance function: $BF \sim R_{++} + R_{--} - R_{+-} - R_{-+} \implies BF$ can be considered as the approximation to forward-backward b_{corr} between r = n + / n - !

4 FB correlations between K/π ratios in models



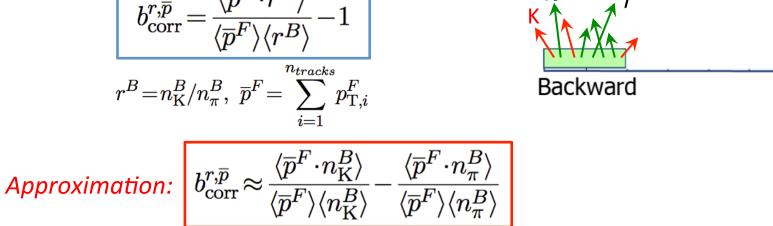
4 FB correlations between K/π ratios in models

- good agreement between direct calculations and the approximation
- a flat trend in AMPT with centrality
- impact from resonance decays (ρ⁰, φ)?

4 FB correlations between K/π ratios in models

- good agreement between direct calculations and the approximation
- a flat trend in AMPT with centrality
- impact from resonance decays (ρ⁰, φ)?

AMPT and **HIJING** give consistent results – quite an unusual case!

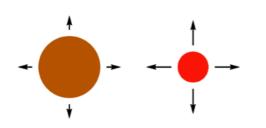

→ Looking forward for real data results...

Igor Altsybeev, Recent developments in particle yield fluctuation measurements

5 FB correlations between yield ratio and average p_{T}

Definition:

determine event-by-event mean transverse momentum in F window and r^{B} in B, and define *a correlation strength* as:

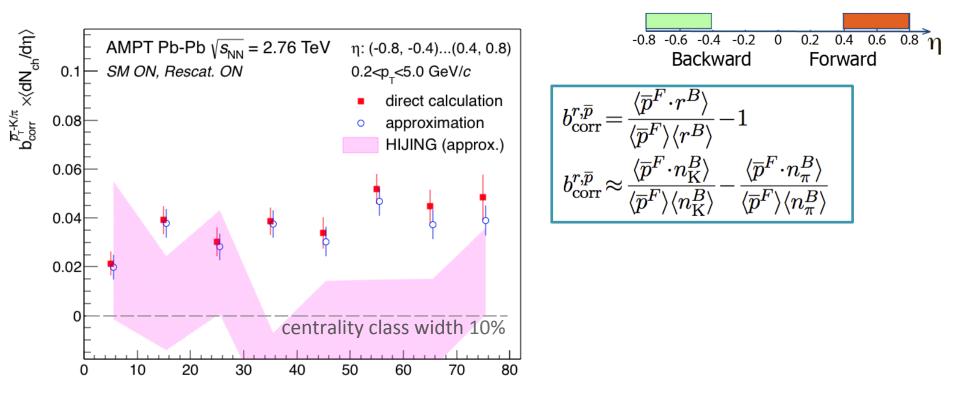


Properties:

Properties are the same as of the b_{corr} between ratios

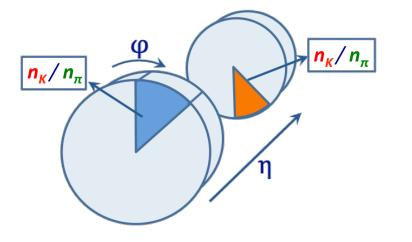

Physics case of interest:

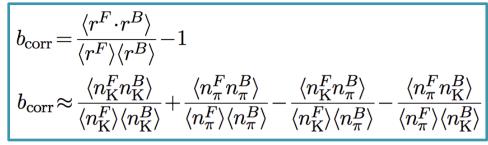
correlations between strangeness production and density of the fireball \leftrightarrow average p_{T}

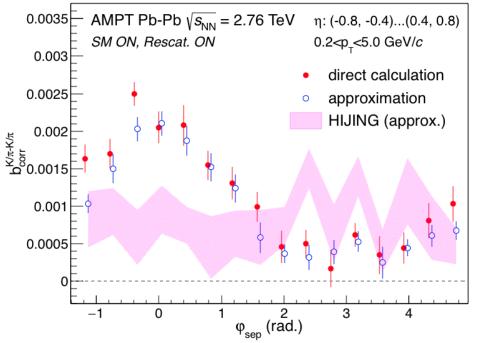

Forwar

5 FB correlations between yield ratio and average p_{T}

- good agreement between direct calculations and the approximation
- impact from resonance decays (ρ⁰, φ)?
- some evolution with centrality in AMPT (?)

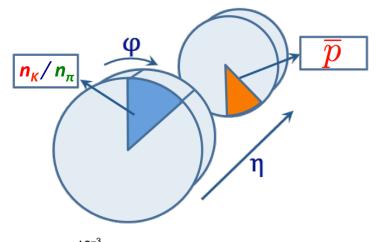

5 FB correlations between yield ratio and average p_{T}


- good agreement between direct calculations and the approximation
- impact from resonance decays (ρ⁰, φ)?
- some evolution with centrality in AMPT (?)
- absence of correlations in HIJING?


6

What if sub-divide also into φ sectors?

FB correlations between K/π ratios:

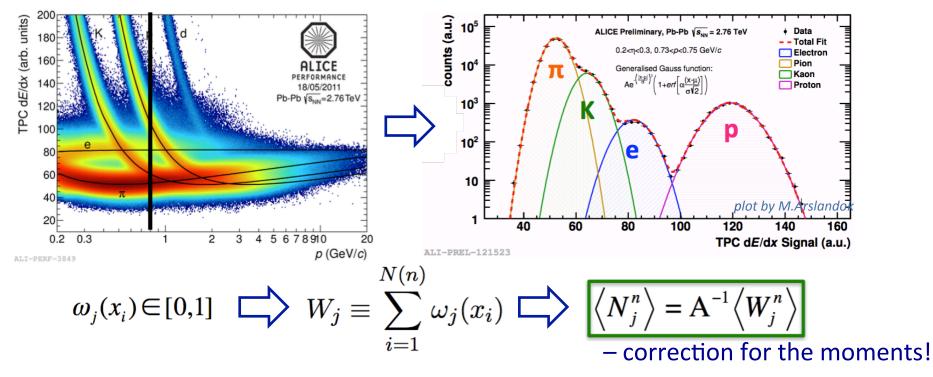


- The approximation works well (even when numbers of kaons in windows are small)
- AMPT: a visible azimuthal structure, while HIJING seems to give a constant

6

What if sub-divide also into φ sectors?

FB correlations between K/π and average p_T :

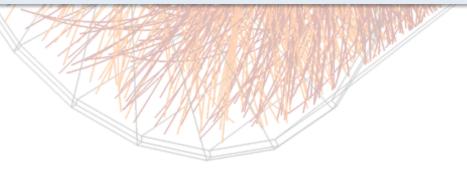

$$\begin{split} b^{r,\overline{p}}_{\rm corr} = & \frac{\langle \overline{p}^F \cdot r^B \rangle}{\langle \overline{p}^F \rangle \langle r^B \rangle} - 1 \\ b^{r,\overline{p}}_{\rm corr} \approx & \frac{\langle \overline{p}^F \cdot n^B_{\rm K} \rangle}{\langle \overline{p}^F \rangle \langle n^B_{\rm K} \rangle} - \frac{\langle \overline{p}^F \cdot n^B_{\pi} \rangle}{\langle \overline{p}^F \rangle \langle n^B_{\rm K} \rangle} \end{split}$$

- ×10⁻³ Pb-Pb $\sqrt{s_{\rm NN}}$ = 2.76 TeV 0.8 η: (-0.8, -0.4)...(0.4, 0.8) 0.2<p_<5.0 GeV/c 0.6 AMPT (approx.) HIJING (approx.) 0.4 b^{p_r}K/π b_{corr} 0.2 C -0.2 0 2 3 4 -1 1 ϕ_{sep} (rad.)
 - AMPT shows clear azimuthal structure, while HIJING is consistent with zero

7 *Finally:* prospects with the Identity Method

PRC 86, 044906 (2012), PRC 89, 054902 (2014)

Allows to solve the problem with particle mis-identification!


- Used in ALICE for corrections of $\nu_{dyn}[\pi,K], \ [\pi,p], \ [p,K]$ (arXiv:1712.07929)
- Can be directly used for FB correlations with the introduced observables!
- Implementation is available:

M. Arslandok, A. Rustamov, arXiv:1807.06370

 $b_{\rm corr} \approx \frac{\langle n_{\rm K}^F n_{\rm K}^B \rangle}{\langle n_{\rm K}^F \rangle \langle n_{\rm K}^B \rangle} + \frac{\langle n_{\pi}^F n_{\pi}^B \rangle}{\langle n_{\pi}^F \rangle \langle n_{\pi}^B \rangle} - \frac{\langle n_{\rm K}^F n_{\pi}^B \rangle}{\langle n_{\rm K}^F \rangle \langle n_{\pi}^B \rangle} - \frac{\langle n_{\pi}^F n_{\rm K}^B \rangle}{\langle n_{\pi}^F \rangle \langle n_{\rm K}^B \rangle}$

Summary

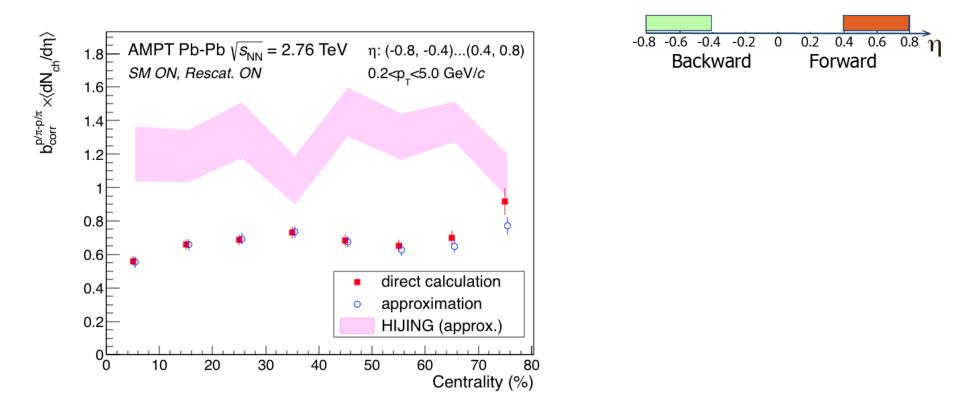
- Event-by-event measurements help to characterize the properties of the "bulk" of the system, they also are closely related to dynamics of the phase transitions.
- Challenges from the experimental point of view:
 - o fluctuations of the volume of the created system
 - o corrections on efficiency and contamination, limited acceptance
 - o difficult to interpret the data due to resonance decays, conservation laws
- Over the past years:
 - o a set of robust variables has been proposed and measured in experiments
 - powerful correction methods, such as Identity method, have been developed

Summary

- Event-by-event measurements help to characterize the properties of the "bulk" of the system, they also are closely related to dynamics of the phase transitions.
- Challenges from the experimental point of view:
 - o fluctuations of the volume of the created system
 - o corrections on efficiency and contamination, limited acceptance
 - o difficult to interpret the data due to resonance decays, conservation laws
- Over the past years:
 - a set of robust variables has been proposed and measured in experiments
 - o powerful correction methods, such as Identity method, have been developed
- Forward-backward correlations between ratios of identified particle yields are proposed
 - robust observable, allows to suppress contributions from decays
 - \circ sensitive to correlation between strangeness production \leftrightarrow fireball density
 - o possible to measure in experiments with strong PID capabilities (ALICE, STAR, MPD?)
 - Identity Method can be utilized for corrections

Summary

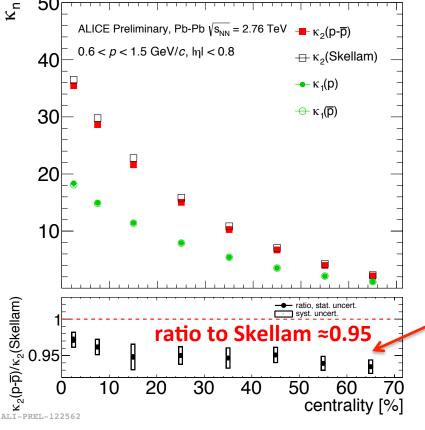
- Event-by-event measurements help to characterize the properties of the "bulk" of the system, they also are closely related to dynamics of the phase transitions.
- Challenges from the experimental point of view:
 - o fluctuations of the volume of the created system
 - o corrections on efficiency and contamination, limited acceptance
 - o difficult to interpret the data due to resonance decays, conservation laws
- Over the past years:
 - o a set of robust variables has been proposed and measured in experiments
 - o powerful correction methods, such as Identity method, have been developed
- Forward-backward correlations between ratios of identified particle yields are proposed
 - robust observable, allows to suppress contributions from decays
 - \circ sensitive to correlation between strangeness production \leftrightarrow fireball density
 - o possible to measure in experiments with strong PID capabilities (ALICE, STAR, MPD?)
 - Identity Method can be utilized for corrections


Thank you for your attention!

This work is supported by the Russian Science Foundation, grant 17-72-20045.

Igor Altsybeev, Recent developments in particle yield fluctuation measurements

FB correlation strength between p/π ratios



- good agreement between direct calculations and approximation
- robust to centrality class width
- HIJING vs AMPT: need deeper investigations to understand the difference

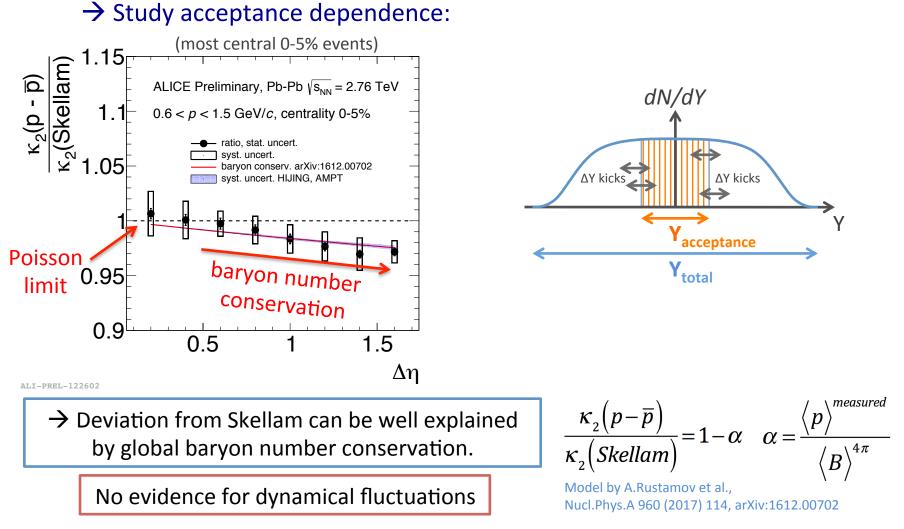
Net-proton fluctuations in Pb-Pb: the 2nd moment

Protons and antiprotons with 0.6<p<1.5 GeV/c and |n|<0.8

1st and 2nd cumulants: $\begin{aligned} \kappa_1(\Delta n_B) &= \langle \Delta n_B \rangle \\ \kappa_2(\Delta n_B) &= \langle \Delta n_B^2 \rangle - \langle \Delta n_B \rangle^2 = \frac{\kappa_2(n_B) + \kappa_2(n_{\bar{B}}) - 2(\langle n_B n_{\bar{B}} \rangle - \langle n_B \rangle \langle n_{\bar{B}} \rangle)}{\text{if Skellam}} \\ \hline \end{aligned}$

Skellam distribution:

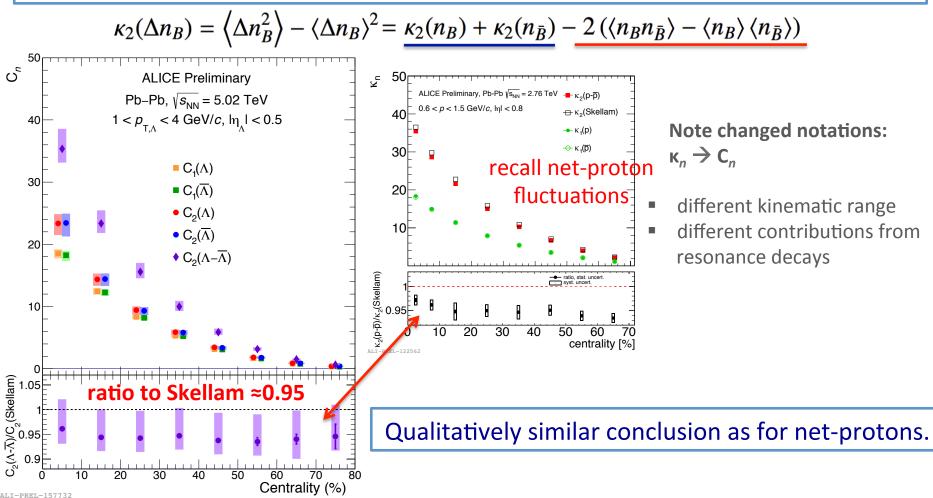
prob. distribution of *difference of two random variables*, each generated from *statistically independent* Poisson distributions.


$$\kappa_n(Skellam) = \langle X_1 \rangle + (-1)^n \langle X_2 \rangle$$

Deviation from Skellam: genuine physics or non-dynamical contributions?

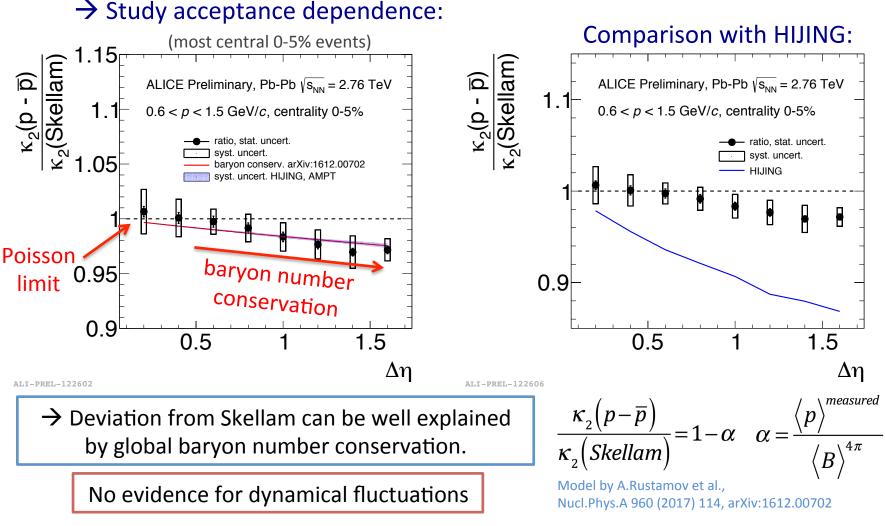
Net-proton fluctuations in Pb-Pb: the 2nd moment

In addition to critical fluctuations, the correlation term may emerge from the **global conservation laws**.


Igor Altsybeev, E-by-E measurements with ALICE

Net-Λ fluctuations in Pb-Pb: *the 2nd moment*

Why measure net-A fluctuations?


- QM2018 talk by A.Ohlson \rightarrow to explore correlated fluctuations of baryon number and strangeness
- different contributions from resonances, etc., than in net-proton measurement

Igor Altsybeev, E-by-E measurements with ALICE

Net-proton fluctuations in Pb-Pb: the 2nd moment

In addition to critical fluctuations, the correlation term may emerge from the **global conservation laws**.

