
A. Sidorov and O.Solovtsova 
 

JINR (Dubna) / GSTU (Belarus) 

 

                                                   XXIV International Baldin Seminar on 

                                                      High Energy Physics Problems  

                                                     Relativistic Nuclear Physics &  

                                                       Quantum Chromodynamics 

                                                     September, 17-22, 2018 

                                                                Dubna, Russia 

High-precision numerical estimates of Mellin-Barnes 
integrals based on the stationary phase contour  

Sept. 17, 2018 



                         Outline 

 Motivation 

 Overview of theoretical framework: contours 

 Numerical estimation of accuracy  

 From Q0
2 to Q2 

 Conclusions 

    A list of physical task in high-energy physics solved using the Mellin-Barnes (MB) integrals – a family  
of integrals in the complex plane whose integrand is given by the ratio of products of Gamma functions 
(two-loop massive Bhabha scattering in QED, three-loop massless form factors, static potentials, 
massive two-loop QCD form factors, B-physics studies hadronic top-quark physics and muon magnetic 
moment anomaly from lepton vacuum polarization) can be supplemented by finding the structure 
functions, the fragmentation functions and parton distributions in QCD analysis of the deep inelastic 
scattering (DIS) data. The volume of experimental data which is included in the analysis quickly 
increases and their accuracy improves. Numerical processing of this experimental material requires   
the effective methods.  
    Recently, significant progress has been made in the numerical computation of the MB integrals,  as 
example, the paper by Gluza, Jelinsky,Kosower[PRD 95 (2017)]. The choice of the integration contour is 
of great practical importance. The best efficiency in a numerical integration of the MB integrals can be 
achieved on the contour of the stationary phase where the oscillations of the integrand are minimal. 
However, the solution of the differential equation for the stationary phase contour and its subsequent 
application to calculate the MB integral requires big computing expenses. Instead, it is proposed to 
build such approximations of the stationary phase contour that would allow the effective application of 
the quadrature integration formulas. 
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 In typical DIS-data processing the integral has to be calculated more than a few millions times.   
Therefore, optimal numerical integration depends on the number of terms  
in the quadrature formula. 
 
 
Usually, the contour C in (1) is chosen parallel to the 
imaginary axis (C0) to the right of the rightmost pole in 
the integrand, or a straight line at an angle (C1) . 

Re z 

Im z 

[M. Gluck, E. Reya and A. Vogt, Z. Phys. 48, 471 (1990); 
 A. Vogt, Com. Phys. Commun. 170, 65 (2005)] 

The efficient contour based on the saddle-point method  
of the integrand in (1) was suggested by Kosower 
 [D.A. Kosower, Nucl.  Phys.  B  506, 439 (1997)]. 
This contour running through a saddle point of the integrand (1) in the 
complex z-plane has the parabolic shape.  
 
 
 
 

  The inverse Mellin transform method is widely used in calculations related to DIS  [M. Gluck, 
E. Reya  PRD 14 (1976)] .The general expression for the inverse Mellin transform is written as 
a contour integral in the complex z-plane 
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Overview of theoretical framework: contours 
  

We present a new approximation for the efficient contour, which close to the  exact contour of 
the stationary phase [A. Sidorov,  V. Lashkevich, OS, Phys. Rev. D97 (2018) 076009]. 

The moments of the  structure function at some fixed momentum transfer Q2 is usually 
expressed in terms of the ration of Gamma function . Then Eq. (1) is a typical MB integral. 
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Notation 

Note 

The Mellin-Barnes integral widely used in calculations of Feynman diagrams,    
 as massive propagator can be written as  

  
We will consider efficient numerical evaluation of the MB integrals 

for the  for two  and  some 

MB integrals 

structure functions, exactly solvably examples,

arising in the Feynman diagra .
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Input: DIS 
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Earlier from QCD analysis of DIS  
data we extracted values of the  
form for NS structure functions  
at some fixed Q  
[A. Sidorov, OS, Mod. Phys.  
Lett. A 29 (2014)].  

    The  parameterization of the F3 structure function is  
typical and widely used in DIS for quarks and gluons 
densities 
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The Q2 evolution of the structure-function non-singlet 
(NS)  moments has a simple form and, in the leading order, 
is fully determined by the strong-interaction constant and 
by the values of the nonsinglet anomalous dimensions       
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x-shape 
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 Restoration of structure function 

The inverse Mellin transformation (1) for the xF3  
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We will calculate (1a) numerically and compare the result with exact value. 
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 Синтез РГ инвариантности и Q2–
аналитичности приводит к 
аналитическому инвариантному 
заряду  без логарифмического 
полюса и с конечным ИФ значением 

Note: Analytic QCD running coupling  
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Kosower contour 
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Overview of theoretical framework: contours 
 

2 0 02

New  variable

where 

:

2 ( ) / ( ) ,  c F c F ct c u

2nd  step 

10 

2

2
1

0

1

2

Using a new variable  one can write the inverse Mellin transform in the fo

where the function ( ) up to order ( ) reads

m

s

r

 a

                                  ( , )

   

( ),

  

2

       

u

H O u

u

u

f
c du

e H u
u

x

H

Q






 

   
(6

3 3/2 2

3 2 6 2 2

2 4 23
0 2 2 6

)

2

To the contour corresponds 

                        

( ) Re

                     

1 4 ( ), ) .

2

    

(

   

)

 

K

u

C

z u

u e ic c u ic c u F z c u Q

c
c ic u c u c c u

   






 

Sept. 17, 2018 



 

Overview of theoretical framework: contours 
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 Comparison of contours 
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 the main contribution to the integral (1a) comes from the region near the saddle point, 
where the curves practically coincide 
 
 the difference in the behavior of contours is more pronounced for small values of 
Bjorken-x variable 
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Relative accuracy  
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From Q0
2 to Q2 
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At large x -values the number of terms in the sum (2) less, than at small x.  

The contour CK
 (x,Q0

2) can be considered as universal, i.e. applicable for any value of Q2.     

The contour CK
 (x,Q2) works more accurately than the contour CK

 (x,Q0
2),  

however this advantages are compensated if using the CK
 (x,Q0

2) increase  
the number of terms in the quadrature formula (2) by 1-2 units.  

4 5 2 2

3

The number of polynomials which is needed for 

achieving  better than 10 and 10 for  ( , 100 GeV ) 
for two types of contour of integration.
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Other example for the Kosower contour 
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Basic feature of a new approach: simple example 
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Asymptotics of the contour Cst is bounded and is parallel to the real  x-axis 
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The asymptotics of the contour  of the stationary phase can be found without solving above 
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 Example of two saddle points 
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New contour for structure function 
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( 1) arg 0.
Calculating the argument of the function and equating its imaginary part to zero,
we arrive at the equation    
From this equation it follows that as  tends to -infinity, the argument
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The asymptotics of the stationary phase contour are parallel to the real axis.
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The contour Cas
 works more accurately than the contour CK

  for N>30.  
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Q2-evolution 
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Asymptotic stationary phase integration contour 

Example I: MB integral arising in Feynman diagrams 

Sept. 17, 2018 



-4 -2 0 2 4 6 8 10
-15

-10

-5

0

5

10

15

  C
as

  C
st

 C
K

 C
K

-s=5.0

Re z 

 

Im z

-5 -4 -3 -2 -1 0

-2

-1

0

1

2  C
as

  C
st

 C
K

 y
as

I
I
(s)

Re z 

 
Im z

1/ 20  (0 ) 4s s      4s 

The proposed contour Cas, whose a construction is quite simple, reproduces the behavior of the exact 

contour Cst well, and the use  of this contour can provide the required high relative accuracy.  
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The asymptotic behavior of the integrand: 
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The case of a complicated shape of the 
stationary phase contour 
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The use of the asymptotic contour of the stationary phase proves to be effective even  
in this complicated case. 

Sept. 17, 2018 



  

30 Sept. 17, 2018 



Conclusions 
    We proposed the method for constructing an effective contour to calculate with high 
accuracy one-dimension Mellin-Barnes integrals. This contour is the approximation of the 
stationary phase contour in the case of their finite asymptotic behavior.  

    The construction of contour Cas  is much easier because it is not requires computation of 
higher derivatives. This gives the advantage for the contour Cas at intensive computations 
related to fitting of experimental data. 
   It was compared the efficiency of application of the asymptotic stationary phase contour Cas 

 

and the contour CK
 . The contour CK  turned out to be more effective for a small number of N 

terms in the Gauss-Laguerre quadrature formula, when the nodes of the quadrature formulas 
are located near the saddle point. The advantage of the contour Cas is manifested at large 
values of N. The ‘regime change’ occurs at N~20 for structure function.  
    It was shown that the contour Cas  makes it possible to calculate the MB integrals effectively even 
in the case of a complicated shape of the stationary phase contour.  
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