Transition form-factor of $\pi \gamma \rightarrow \pi \pi$ in nonlocal quark model.

A.S. Zhevlakov (TSU, Russia)

17 September 2018, Dubna, Baldin ISHEPP XXIV

- Chiral anomalies
- Nonlocal quark model
- Transition form-factor
- Results

CONSEQUENCES OF ANOMALOUS WARD IDENTITIES
\section*{J. WESS}
CERN, Genera, Snilzcrland
and
Inicersily of Karlsrwhe', Kavlsruhe, Germany
and
B. ZUMINO
CERN, Genera, Suitzertand
Received 7 September 1971

The anomalies of Ward identities are shown to satisfy consistency or intogrability relations, which restrict their possible form. For the ease of $\mathrm{SU}(3)>\mathrm{SU}(3)$ we verify that the anomaties given by Bardeen satisfy the consistency relations. A solution of the anomalous Ward identities is also given which describes concisely all anomalous contributions to low energy theorems. The contributions to strong five pscudoscalar interactions. to K_{l+}, to one- and two-photon internctions with three psoudoscalars are explicitly exhibited.

The one photon-three pseudoscalar interaction is given by

$$
\begin{aligned}
& \frac{e}{\mathbf{i} 24 \pi^{2} F_{\pi}^{3}} \epsilon_{\mu \nu \sigma \tau} F_{\mu \nu} \times \\
& \times\left[\left(c_{\sigma} \Pi^{+} \lambda_{\tau} \Pi^{-}+\hat{\sigma}_{\sigma} \mathrm{K}^{+} \hat{c}_{\tau} \mathrm{K}^{-}\right)\left(\Pi^{0}+\frac{1}{\sqrt{3}} \eta\right)+\hat{c}_{\sigma} \mathrm{K}^{\mathrm{o}} \lambda_{\tau} \overline{\mathrm{K}}^{\mathrm{o}}\left(\Pi^{\mathrm{o}}-\sqrt{3} \eta\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
A\left(\pi^{0} \rightarrow \gamma \gamma\right)=F_{\gamma \gamma}\left(M_{\pi^{0}}^{2}\right) \epsilon^{\mu \nu \alpha \beta} \epsilon^{\mu} k_{1}^{\nu} \epsilon^{\alpha} k_{2}^{\beta} \tag{1}
\end{equation*}
$$

where ϵ_{j}^{i} and k_{j}^{i} - polarizations and momenta of photons and

$$
\begin{equation*}
F_{\gamma \gamma}(0)=\frac{e^{2}}{4 \pi^{2} f_{\pi}} \tag{2}
\end{equation*}
$$

Where $f_{\pi}=f_{0}\left[1+O\left(m_{q}\right)\right]=92.4 \mathrm{MeV}$ is pion decay constant.
Other processes $\gamma \pi^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ or $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \pi^{0} \pi^{-} \pi^{+}$which also are connect to WZW anomalous effective action and amplitude of reaction has a form

$$
\begin{equation*}
A\left(\gamma \pi^{-} \rightarrow \pi^{-} \pi^{0}\right)=-i F(s, t, u)_{3 \pi} \epsilon^{\mu \nu \alpha \beta} \epsilon^{\mu} p_{0}^{\nu} p_{1}^{\alpha} p_{2}^{\beta} \tag{3}
\end{equation*}
$$

where ϵ^{μ} is polarization of incident photon and p_{i}-momenta of pions. In chiral limit in low-order by quark-loops form-factor of this amplitude is independent from the Mandelstam variables s, t, u and have a simple form

$$
\begin{equation*}
F_{3 \pi}(0,0,0)=\frac{e}{4 \pi^{2} f_{\pi}^{3}}=9.72 \mathrm{GeV}^{-3} \tag{4}
\end{equation*}
$$

Estimation from experiment (IHEP accelerator (Serpukhov)) estimate of the value $F_{3 \pi}$ was given

$$
\begin{equation*}
F_{3 \pi}^{\exp }=(12.9 \pm 0.9 \pm 0.5) \mathrm{GeV}^{-3} \tag{5}
\end{equation*}
$$

The experiment was based on pion pair production by pions in the nuclear Coulomb field via the Primakoff reaction

$$
\begin{equation*}
\pi^{-}+(Z, A) \rightarrow \pi^{-1}+(Z, A)+\pi^{0} \tag{6}
\end{equation*}
$$

The Lagrangian of the $S U(2) \times S U(2)$ nonlocal chiral quark model has the form ${ }^{1}$

$$
\mathcal{L}_{N \chi Q M}=\bar{q}(x)\left(i \hat{\partial}-m_{c}\right) q(x)+\frac{G}{2}\left[J_{S}^{a}(x) J_{S}^{a}(x)+J_{P}^{a}(x) J_{P}^{a}(x)\right]
$$

where $q(x)$ are the quark fields, m_{c} is the diagonal matrix of the quark current masses G is the four-quark coupling constant.

The nonlocal structure of the model is introduced via the nonlocal quark currents

$$
\begin{align*}
& J_{S, P}^{a}(x)=\int d^{4} x_{1} d^{4} x_{2} f\left(x_{1}\right) f\left(x_{2}\right) \bar{q}\left(x-x_{1}\right) \Gamma_{S, P}^{a} q\left(x+x_{2}\right) \\
& \Gamma_{S}^{a}=\tau^{a}, \Gamma_{P}=i \gamma^{5} \tau^{a} \tag{7}
\end{align*}
$$

where $f(x)$ is a form factor reflecting the nonlocal properties of the QCD vacuum and τ^{a} is matrix of Pauli.

[^0]Integrating out the quark fields produced functional have a form:

$$
\begin{equation*}
Z=\int D \vec{\pi} D \sigma \exp \left[-S_{E}^{(\sigma, \pi)}\right] \tag{8}
\end{equation*}
$$

where bosonisated action

$$
\begin{equation*}
S_{E}^{(\sigma, \pi)}=-\ln \operatorname{det}(\boldsymbol{D})+\frac{1}{2 G} \int \frac{d^{4} p}{(2 \pi)^{4}}\left(\sigma^{2}+\vec{\pi}^{2}\right) \tag{9}
\end{equation*}
$$

The operator \boldsymbol{D} in momentum space can be written as

$$
\boldsymbol{D}=\left(-\hat{p}-m_{c}\right)(2 \pi)^{4} \delta\left(p-p^{\prime}\right)+f\left(p^{2}\right) f\left(p^{\prime 2}\right)\left(\sigma+\tau^{a} \pi^{a}\right)
$$

where $f(p)$ is Fourier transform from form factor $f(x)$.

Bosonized effective action is

$$
\begin{equation*}
S_{E}^{(\sigma, \pi)}=S_{E}^{M F}+S_{E}^{q u a d}+\ldots \tag{10}
\end{equation*}
$$

where

$$
\begin{gather*}
\frac{S^{M} F_{E}}{V^{(4)}}=-4 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \ln \left[p^{2}+m^{2}\left(p^{2}\right)\right]+\frac{m_{d}^{2}}{2 G} \tag{11}\\
S_{E}^{q u a d}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} G^{-}\left(p^{2}\right) \vec{\pi}(p) \cdot \vec{\pi}(-p) \\
m\left(p^{2}\right)=m_{c}+m_{d} f^{2}\left(p^{2}\right) \tag{12}\\
G^{-}\left(p^{2}\right)=\frac{1}{G}-8 N_{c} \Pi_{a}\left(p^{2}\right) \tag{13}
\end{gather*}
$$

where the mass of quark received a dependence on momentum and $\Pi_{a}\left(p^{2}\right)$ is polarization operaton

$$
\begin{equation*}
\Pi_{a}\left(p^{2}\right)=\int \frac{d_{E}^{4} k}{(2 \pi)^{4}} \frac{f_{k_{+}}^{2} f_{k_{-}}^{2}\left[\left(k_{+} \cdot k_{-}\right)+m\left(k_{+}^{2}\right) m\left(k_{-}^{2}\right)\right]}{\left[k_{+}^{2}+m^{2}\left(k_{+}^{2}\right)\right]\left[k_{-}^{2}+m^{2}\left(k_{-}^{2}\right)\right]} \tag{14}
\end{equation*}
$$

with $k_{ \pm}=k \pm p / 2$ and $f_{k_{i}}=f\left(k_{i}^{2}\right)$. The integration here and later is gone on Euclid space $d_{E}^{4} k$.

The nonlocal vertex of interaction quark-antiquark with external field can be written:

$$
\begin{equation*}
\Gamma_{\mu}(q)=\gamma_{\mu}-\left(p_{2}+p_{1}\right)_{\mu} m\left(p_{1}, p_{2}\right), \tag{15}
\end{equation*}
$$

where p_{1} and $p_{2}=p_{1}+q$ are momentums of quark, q-momentum of external field ${ }^{2}$. For interaction quark-antiquark with scalar or pseudoscalar mesons:

$$
\begin{align*}
& \Gamma_{\sigma}^{a}=g_{\sigma}\left(q^{2}\right) \tau^{a} f\left(p_{1}^{2}\right) f\left(p_{2}^{2}\right), \tag{16}\\
& \Gamma_{\pi}^{a}=g_{\pi}\left(q^{2}\right) \gamma_{5} \tau^{a} f\left(p_{1}^{2}\right) f\left(p_{2}^{2}\right) \tag{17}
\end{align*}
$$

where p_{1} and $p_{2}=p_{1}+q$ are momentums of quarks, q-momentum of meson, $g_{\sigma}\left(q^{2}\right)$ and $g_{\pi}\left(q^{2}\right)$ are constants which described a renormalization of scalar or pseudoscalar meson fields accordingly. The constants $g_{\sigma, \pi}\left(q^{2}\right)$ can be found from expression on propagator of meson:

$$
\begin{equation*}
\frac{1}{-G+\Pi_{\sigma, \pi}\left(p^{2}\right)}=\frac{g_{\sigma, \pi}^{2}\left(p^{2}\right)}{p^{2}-m_{\sigma, \pi}^{2}}, \tag{18}
\end{equation*}
$$

and in case of mass-shell of pion

$$
\begin{equation*}
\frac{1}{g_{\sigma, \pi}^{2}\left(m_{\sigma, \pi}^{2}\right)}=\left.\frac{\partial \Pi_{\sigma, \pi}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m_{\sigma, \pi}^{2}} \tag{19}
\end{equation*}
$$

where $\Pi_{\sigma, \pi}\left(p^{2}\right)$ is polarization operator

[^1]

Figure: Feynman diagram which described transition form-factor $\gamma^{*} \pi^{-} \rightarrow \pi^{0} \pi^{-}$. All vertexes are nonlocal.

The amplitude of transition gamma in three pions can be written as

$$
\begin{equation*}
A\left(\gamma \rightarrow \pi^{+} \pi^{0} \pi^{-}\right)=-i F_{3 \pi}(s, t, u) \epsilon^{\mu \nu \alpha \beta} \epsilon^{\mu} p_{0}^{\nu} p_{1}^{\alpha} p_{2}^{\beta} \tag{20}
\end{equation*}
$$

where p_{i} are momenta of pions, ϵ^{μ} is polarization of photon and $F_{3 \pi}(s, t, u)$ is a Lorentz scalar function of the Mandelstam variables which is defined from three types of diagrams in different kinematics:

$$
\begin{equation*}
F_{3 \pi}(s, t, u)=F_{1}(s, t, u)+F_{2}(t, s, u)+F_{3}(u, t, s) . \tag{21}
\end{equation*}
$$

where s, t, u - are Mandelstam invariance variables.

$$
\begin{align*}
F_{1}(s, t, u)= & 4 e N_{c} \int \frac{d_{E}^{4} k}{(2 \pi)^{4}} \frac{g_{\pi}\left(p_{0}^{2}\right) g_{\pi}\left(p_{1}^{2}\right) g_{\pi}\left(p_{2}^{2}\right) f_{k} f_{k+p_{1}}^{2} f_{k-p_{0}}^{2} f_{k-p_{0}-p_{2}}}{D(k) D\left(k+p_{1}\right) D\left(k-p_{0}\right) D\left(k-p_{0}-p_{2}\right)} \times \\
& \times \operatorname{Tr}_{f}\left[Q\left(\pi^{-} \pi^{0} \pi^{+}+\pi^{+} \pi^{0} \pi^{-}\right)\right]\left\{m\left(k^{2}\right)[A+1-B]-m\left(\left(k-p_{0}\right)^{2}\right)[C+A]\right. \tag{22}\\
& \left.\quad+m\left(\left(k+p_{1}\right)^{2}\right) C+m\left(\left(k-p_{0}-p_{2}\right)^{2}\right) B\right\}
\end{align*}
$$

where $D(k)=k^{2}+m^{2}\left(k^{2}\right), Q$ is a charge matrix of quark, and $\pi^{i}=\pi^{a} \tau^{a} / \sqrt{2}$ where π^{a} is matrix of pion fields.

$$
\begin{align*}
& F_{2}(t, s, u)=F_{1}(s, t, u)\left(p_{0} \leftrightarrows-p_{1}, \pi^{0} \leftrightarrow \pi^{+}\right) \tag{23}\\
& F_{3}(u, t, s)=F_{1}(s, t, u)\left(p_{0} \leftrightarrow-p_{2}, \pi^{0} \leftrightarrow \pi^{-}\right) \tag{24}
\end{align*}
$$

In low energy limit when kinematic invariants $s=t=u=0$ the transition form factor have a form

$$
\begin{align*}
F_{3 \pi}(0,0,0)=e N_{c} N_{f} g_{\pi}^{3} \int \frac{d_{E}^{4} k}{(2 \pi)^{4}} f^{6}(k)\{4 & {\left[\frac{\left(m\left(k^{2}\right)-m^{\prime}\left(k^{2}\right) k^{2}\right)}{D(k)^{4}}\right] } \\
& \left.-32 m_{c}\left[\frac{\left(m^{2}\left(k^{2}\right)-m\left(k^{2}\right) m^{\prime}\left(k^{2}\right) k^{2}\right)}{D(k)^{5}}-\frac{1}{8} \frac{1}{D(k)^{4}}\right]\right\} \tag{25}
\end{align*}
$$

here $m\left(k^{2}\right)=m_{d} f^{2}\left(k^{2}\right), g_{\pi}=g_{\pi}(0)$ and second term here gives a dependence from current mass of quark. In chiral limit when current mass of quark m_{c} is zero this form factor takes a form

$$
\begin{equation*}
F_{3 \pi}(0,0,0)=\frac{e N_{c} N_{f}}{f_{\pi}^{3}} \int \frac{d_{E}^{4} k}{(2 \pi)^{4}}\left[\frac{4 m^{4}\left(k^{2}\right)-4 m^{\prime}\left(k^{2}\right) m^{3}\left(k^{2}\right) k^{2}}{D(k)^{4}}\right] \tag{26}
\end{equation*}
$$

where $f_{\pi}=g_{\pi} / m_{d}$ and $m^{\prime}\left(k^{2}\right)=\frac{\partial m\left(k^{2}\right)}{\partial k^{2}}$.
In local limit of model when parameter of nonlocality $\Lambda \rightarrow \infty, f\left(k^{2}\right) \rightarrow 1$ and $m^{\prime}(k)=0$, $m\left(k^{2}\right)=m_{d}$. And integral can be solved analytically:

$$
\begin{equation*}
\int_{0}^{\infty} d k^{2} \frac{k^{2} m^{4}}{\left(k^{2}+m^{2}\right)^{4}}=\frac{1}{6} \tag{27}
\end{equation*}
$$

Transition form factor in local limit reproduces the WZW form-factor :

$$
\begin{equation*}
F_{3 \pi}=\frac{e N_{c} N_{f}}{24 \pi^{2} f_{\pi}^{3}}=\frac{e}{4 \pi^{2} f_{\pi}^{3}} \simeq 9.72(0.09) \mathrm{GeV}^{-3} \tag{28}
\end{equation*}
$$

For physical masses of pions, transition form factor should be calculated on the physical threshold for $q^{2}=0$ and $s+t+u=3 m_{\pi}^{2}$. In this case, kinematics variables take the form of $s^{t h r}=\left(m_{\pi-}+m_{\pi^{0}}\right)^{2}, t^{t h r}=-m_{\pi^{-}} m_{\pi^{0}}^{2} /\left(m_{\pi^{-}}+m_{\pi^{0}}\right)$ and $u^{t h r}=m_{\pi^{-}}\left(m_{\pi^{-}}^{2}-m_{\pi^{-}} m_{\pi^{0}}-m_{\pi^{0}}^{2}\right) /\left(m_{\pi^{-}}+m_{\pi^{0}}\right)$. In this case, in low order of perturbation by m_{π}^{2} transition form factor $F_{3 \pi}^{t h r}$ will be have similar form as in chiral limit:

$$
\begin{equation*}
F_{3 \pi}^{t h r}\left(s^{t h r}, t^{t h r}, u^{t h r}\right)=e N_{c} N_{f} g_{\pi}^{3}\left(m_{\pi}^{2}\right) \int \frac{d_{E}^{4} k}{(2 \pi)^{4}} f^{6}\left(k^{2}\right) \times\left[\frac{4 m\left(k^{2}\right)-4 m^{\prime}\left(k^{2}\right) k^{2}}{D(k)^{4}}\right]+\mathcal{O}\left(m_{\pi}^{2}\right), \tag{29}
\end{equation*}
$$

The correction of pion mass is suppressed. Dependence of current quark changes a quantity of transition form factor:

$$
\begin{equation*}
F_{3 \pi}^{t h r}\left(s^{t h r}, t^{t h r}, u^{t h r}\right)=10.3(0.52) \mathrm{GeV}^{-3} . \tag{30}
\end{equation*}
$$

group/ approach	data GeV^{-3}
exp. $\mathrm{O}\left(\mathrm{p}^{4}\right)(e=0)$	12.9 ± 1.4
exp. $\mathrm{O}\left(\mathrm{p}^{6}\right)(e=0)$	11.9 ± 1.3
exp. $\mathrm{O}\left(\mathrm{p}^{8}\right)(e=0)$	11.4 ± 1.3
NPCR	11.4 ± 1.3
Holstein	11.9 ± 1.4
Ametller $(\mathrm{e} \neq 0)$	10.7 ± 1.2
This calc. ${ }^{3}$	10.3 ± 0.52
chiral anomaly (WZW)	9.72 ± 0.3

Model/theory	Cross-section $[\mathrm{nb}]$	$\mathcal{F}_{3 \pi}^{\text {thr }}$ $\left[\mathrm{GeV}^{-3}\right]$	$\mathcal{F}_{3 \pi}^{(0) \text { extr }}$ $\left[\mathrm{GeV}^{-3}\right]$
1) $\mathcal{F}_{3 \pi}=\frac{e}{4 \pi^{2} F_{3}^{3}}=9.72 \mathrm{GeV}^{-3}$	1.92	9.7	10.2 ± 1.1
2) Terent'ev, eq. (35) with $\Delta_{p}=0.5$ and $\Delta_{\omega}=0$	2.80	10.3	8.4 ± 0.9
3) Terent'ev, eq. (35) with $\Delta_{p}=0.5$ and $\Delta_{\omega}=1.5$	2.62	10.3	8.7 ± 1.0
4) Terent'ev, eq. (35) with $\Delta_{p}=0.35$ and $\Delta_{\omega}=0$	2.51	10.1	8.9 ± 1.0
5) Terent'ev, eq. (35) with $\Delta_{\rho}=0.35$ and $\Delta_{\omega}=3.2$	2.18	10.1	9.6 ± 1.1
6) Rudaz, eq. (36)	2.36	10.0	9.2 ± 1.0
7) ChPT at $\mathcal{O}\left(p^{6}\right)$ (eq. (29)) without q^{2}-dependence	2.33	10.4	9.2 ± 1.0
8) ChPT at $\mathcal{O}\left(p^{6}\right)$ (eq. (29)) with q^{2}-dependence	2.05	10.4	9.9 ± 1.1
9) ChPT at $\mathcal{O}\left(p^{6}\right)$ (eq. (29)) with q^{2}-dependence			
plus electromagnetic correction of eq. (34)	2.17	12.1	9.6 ± 1.1
10) ChPT at $\mathcal{O}\left(p^{6}\right)$ with modified dependence of eq. (33)	2.83	10.5	8.4 ± 0.9
11) Holstein, eq. (37)	3.05	10.4	8.1 ± 0.9

Figure: from Giller Eur. Phys. J. A 25, 229-240 (2005)
${ }^{3}$ this work is supported by RSF grant
A.S. Zhevlakov (TSU) page $13 \quad 17$ September 2018, Dubna, Baldin ISHEPP XXIV $13 / 14$

Thank you for attention!

Figure: TSU

[^0]: ${ }^{1}$ Anikin:2000, Scarpettini:2003

[^1]: ${ }^{2}$ Anikin:2000rq,Dorokhov:2015psa, Dorokhov:2011zf

