

ALICE upgrade programme (Программа модернизации АДИЦЕ)

Andrea Dainese (INFN Padova, Italy) on behalf of the ALICE Collaboration

Run:225000 Timestamp:2015-06-03 09:21:39(UTC) Colliding system:p-p Energy: 13 TeV

- Future of the LHC heavy ion programme
- ALICE upgrade goals and strategy
- Overview of detector upgrades
- Selected physics items: present status and prospects with the upgrade
 - Open heavy flavour
 - Charmonium
 - Low-mass di-leptons
 - Light nuclei
- Outlook: FoCal project study

Heavy lons at the LHC: Run I

SQM2015, Dubna, 6-11.07.

INFN

year	system	$\sqrt{m{s}_{_{m{NN}}}}$ (TeV)	L _{int}
2010	Pb-Pb	2.76	~ 10 μb⁻¹
2011	рр	2.76	~ 250 nb⁻¹
2011	Pb-Pb	2.76	~ 150 μb⁻¹
2013	p-Pb	5.02	~ 30 nb⁻¹
2013	рр	2.76	~ 5 pb⁻¹

- 2011 Pb-Pb run already reached nominal luminosity: 5x10²⁶
- First p-Pb run (with all four large exp's)
- ◆ Two short pp reference runs at Pb-Pb \sqrt{s}

- **Run 2:** Pb-Pb ~1-2/nb, at $√s_{NN} \sim 5$ TeV, 1 p-Pb run (5 or 8 TeV), short pp reference runs ~5 TeV
- **LS2 (2018-19):** [most likely postponed to 2019-20]
 - > LHC collimator upgrades: target Pb-Pb L ~ $6x10^{27}$ cm⁻²s⁻¹ (i.e. 50 kHz int. rate)
 - Major ALICE upgrade (important upgrades, relevant for HI, also for ATLAS, CMS and LHCb)

Runs 3+4 (2020-28):

- Exp's request: >10/nb Pb-Pb 5.5 TeV (ALICE: 10/nb at 0.5T + 3/nb at 0.2T)
 - \rightarrow x100 larger min. bias sample for ALICE wrt Run 2 (~10¹¹ events)
 - \rightarrow x10 larger rare trigger sample for ATLAS/CMS wrt Run 2
- > + p-Pb high lumi, pp ref. 5.5 TeV, possibly light ions (e.g. Ar-Ar)

Future of the LHC heavy ion programme

ALICE upgrade goals and strategy

- Overview of detector upgrades
- Selected physics items: present status and prospects with the upgrade
 - Open heavy flavour
 - Charmonium
 - Low-mass di-leptons
 - Light nuclei
- Outlook: FoCal project study

ALICE detector and its upgrade

SQM2015, Dubna, 6-11.07.15

INFN

Andrea Dainese | ALICE

- **1.** Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_{T}
- 2. Charmonia regeneration as tool to study deconfinement
 - \rightarrow Charmonia down to zero $p_{\rm T}$
- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons
- 4. Production of light nuclei from the QGP
 - → Precise measurement of light nuclei and hyper-nuclei

Heavy flavour: requirements

TOF (p/K/π id)

 $D^0 \rightarrow K\pi$

D⁺ → Кππ D^{*} → D⁰π

 $D_s \rightarrow KK\pi$ (limited)

 $HF \rightarrow e/\mu + X$

Currently, in Pb-Pb:

General features:

Decay at few 100 μm from interaction point

Large combinatorial background → low signal/background → no dedicated trigger

B → e / J/ ψ +X (limited) Goals for upgrade: Precision! p_T→0! B → D⁰+X B → J/ ψ +X B → e/ ψ +Y

 $B \rightarrow e/\mu + X$ $\Lambda_{c} \rightarrow pK\pi$ $\Lambda_{b} \rightarrow \Lambda_{c}\pi$

Requirements:

- Vertexing resolution
- Preserve particle identification
- Large statistics (no dedicated trigger)

TPC (tracking, p/K/π id) ITS (tracking & vertexing)

Κ

SQM2015, Dubna, 6-11.07.15

Andrea Dainese | ALICE

e

e

Charmonium: requirements

ITS, TPC (tracking) TPC, TRD, TOF (id)

μ

MUON (tracking,id)

Currently, in Pb-Pb: Incl. $J/\psi \rightarrow \mu\mu$ $\psi' \rightarrow \mu\mu$ (limited) Incl. $J/\psi \rightarrow ee$ (limited) $B \rightarrow J/\psi \rightarrow ee$ (limited) Goals for upgrade: Precision! $\psi' \rightarrow ee$ Direct J/ψ $B \rightarrow J/\psi+X$ ($\mu\mu$ and ee)

General features:

B decay few 100 μm from interaction point

Large combinatorial background in ee channel → low signal/background → no dedicated trigger

Requirements:
Vertexing resolution
Preserve particle identification
Large statistics (no dedicated trigger)

Low-mass di-leptons: requirements

Currently, in Pb-Pb: very small S/B, highmass region not accessible Goals for upgrade: $\rho \rightarrow ee$ $\rho \rightarrow \mu\mu$ $\gamma * \rightarrow ee$

γ***** → μμ

General features:

Electrons and muons with very low momentum

Large background from heavy flavour decays

Large combinatorial background → low signal/background → no dedicated trigger

Requirements:
Tracking efficiency at low p_T
Vertexing resolution
Preserve particle identification
Large statistics (no dedicated trigger)

SQM2015, Dubna, 6-11.07.15

ALICE Upgrade: summary of requirements

- ◆ Tracking efficiency and resolution at low p_T
 → increase tracking granularity, reduce material thickness
- Large statistics (no dedicated trigger)
 - → increase readout rate, reduce data size (online compression)
- Preserve particle identification
 - \rightarrow consolidate and "speed-up" the PID detectors

ALICE Upgrade: strategy

New Inner Tracking System (ITS)

Improved resolution, less material, faster readout

ALICE Upgrade: strategy

New Inner Tracking System (ITS)

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity

INFN

ALICE Upgrade: strategy

New Inner Tracking System (ITS)

- Improved resolution, less material, faster readout
- New Forward Muon Tracker (MFT)
 - HF vertices also at forward rapidity
- Upgraded read-out for TPC, TOF, TRD, MUON, ZDC, EMCal, PHOS, new trigger detector (FIT), integrated Online-Offline system (O²)
 - Record minimum-bias Pb-Pb data at 50 kHz (currently <0.5 kHz)</p>

INFN

- Future of the LHC heavy ion programme
- ALICE upgrade goals and strategy
- Overview of detector upgrades
- Selected physics items: present status and prospects with the upgrade
 - Open heavy flavour
 - Charmonium
 - Low-mass di-leptons
 - Light nuclei
- Outlook: FoCal project study

New all-pixel trackers: ITS and MFT

Acceptance

Pres. ITS

|η|<0.9

New ITS

|η|<1.5

7

2.3 cm

1.86 cm

0.3-0.8% X_o

~5x5 µm²

100 kHz

MFT

-3.6<η<-2.3

5

/

1

0.6% X₀

~5x5 µm²

100 kHz

INFN

ITS: CERN-LHCC-2013-024 MFT: CERN-LHCC-2015-001

Andrea Dainese | ALICE

Tracking precision

ITS: pointing resolution x3 better in transverse plane (x6 along beam) MFT: pointing resolution better than 100 μ m for p_T > 1 GeV/*c*

CERN-LHCC-2013-024

- Future of the LHC heavy ion programme
- ALICE upgrade goals and strategy
- Overview of detector upgrades
- Selected physics items: present status and prospects with the upgrade
 - Open heavy flavour
 - Charmonium
 - Low-mass di-leptons
 - Light nuclei
- Outlook: FoCal project study

- **1.** Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_{T}
- 2. Charmonia regeneration as tool to study deconfinement
 - \rightarrow Charmonia down to zero p_{T}
- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons
- 4. Production of "light" nuclei from the QGP

 \rightarrow Precise measurement of light nuclei and hyper-nuclei

21

ALICE, CERN-LHCC-2013-024, CERN-LHCC-2015-001

ALICE, CERN-LHCC-2013-024

Present data on charm V₂

Upgrade: Charm and beauty v_2 down to $p_T \sim 0$ using prompt and B-decay D⁰

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

In-medium heavy-flavour hadronization?

ALICE Preliminary

Pb-Pb, *s*_{NN} = 2.76 TeV

Average D⁰, D⁺, D⁺ 0-7.5%, |y|<0.5_

with pp p_-extrapolated reference

TAMU, PLB 735 (2014) 445

25

30

35

p_ (GeV/c)

 D_{s}^{+} 0-7.5%, |y| < 0.5

---Non-strange D

20

15

- From LHC Run 1 data, some hints that charm could recombine in the medium:
 - > J/ ψ R_{AA} (and v_2) at low p_T
 - > D v_2 (LHC) and D R_{AA} (RHIC) better described with recombination?
 - > $D_s R_{AA}$ (central value) larger than D R_{AA} ?

In-medium heavy-flavour hadronization?

- From LHC Run 1 data, some hints that charm could recombine in the medium
- Precise measurements of HF mesons (non-strange and strange) and baryons
- \rightarrow Precise measurements of their v_2 (+ that of J/ ψ , discussed later)

ALICE, CERN-LHCC-2013-024

- 1. Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_{T}
- 2. Charmonia regeneration as tool to study deconfinement

 \rightarrow Charmonia down to zero p_{T}

- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons
- 4. Production of "light" nuclei from the QGP

 \rightarrow Precise measurement of light nuclei and hyper-nuclei

Low-p_T charmonium: Run I vs. Upgrade

- Is J/ ψ v₂ consistent with that of D mesons in a regeneration scenario?
- J/ψ v₂ with expected precision better than 0.005 (x10 better than in Run-1), also for *prompt* J/ψ (more direct comparison with models)

Low-p_T charmonium: Run I vs. Upgrade

 Low-p_T ψ'/ψ could allow to discriminate between models of recombination (transport vs. statistical)

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}(\psi')/\mathsf{R}_{\mathsf{A}\mathsf{A}}(\psi)$

Run 1: limited precision, no central coll.

Upgrade: p_T>0, precision <10%

SQM2015, Dubna, 6-11.07.15

- 1. Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_{T}
- 2. Charmonia regeneration as tool to study deconfinement \rightarrow Charmonia down to zero p_{T}
- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons
- 4. Production of "light" nuclei from the QGP

 \rightarrow Precise measurement of light nuclei and hyper-nuclei

 ρ spectral function and thermal radiation INFN via "low-mass" di-leptons

Di-lepton signals:

- Vector mesons (ρ) \rightarrow I⁺I⁻
- QGP radiation $\gamma/\gamma * \rightarrow |+|^{-1}$

Very large combinatorial background:

- Conversions in the material (for ee)
- π/K decays (for $\mu\mu$)
- Charm decays

Benefits of the upgrade:

- ITS reduced thickness \rightarrow less conversions
- ITS tracking efficiency \rightarrow measure conversions
- ITS/MFT resol \rightarrow reject charm \rightarrow e/ μ and $\pi/K \rightarrow \mu$
- High rate \rightarrow statistical significance x10

 \rightarrow dedicated low-field run for optimal

electron acceptance at low p_{T}

Sum

Rapp in-medium SF

PbPb @ \s__ = 5.5 TeV

Di-leptons: Run I vs. Upgrade

INFN

Both ee and μμ: good sensitivity to ρ spectral function in both channels

ee, IMR:

measurement of thermal radiation inv. slope with ~10% precision

> CERN-LHCC-2012-012 CERN-LHCC-2013-014

SQM2015, Dubna, 6-11.07.15

- 1. Characterise mechanisms of quark-medium interaction \rightarrow Heavy flavour dynamics and hadronisation at low p_{T}
- 2. Charmonia regeneration as tool to study deconfinement
 - \rightarrow Charmonia down to zero p_{T}
- 3. Chiral symmetry and QGP temperature at LHC
 - → Vector mesons and virtual thermal photons via dileptons
- 4. Production of light nuclei from the QGP
 - \rightarrow Precise measurement of light nuclei and hyper-nuclei

 Production of light nuclei and hyper-nuclei in AA is sensitive to QGP hadronisation mechanisms: statistical hadronisation vs. coalescence of nucleons and Λ's

ALICE, arXiv:1506.08453

ALICE, CERN-LHCC-2013-024

- Future of the LHC heavy ion programme
- ALICE upgrade goals and strategy
- Overview of detector upgrades
- Selected physics items: present status and prospects with the upgrade
 - Open heavy flavour
 - Charmonium
 - Low-mass di-leptons
 - Light nuclei
- Outlook: FoCal project study

Study for a forward calorimeter in ALICE

- FoCal: R&D for a high-granularity calorimeter at η~3-5 with focus on saturation physics studies
 - Possible installation during LS3
- Benchmark measurement: direct photons η~4-5 in p-Pb (x~10⁻⁵)
 - Sensitive to Shadowing vs. Saturation

Major ALICE upgrade in 2018-19

- > Increase tracking precision at low p_T at mid and forward y
- Enable readout rate of 50 kHz in Pb-Pb
- Min-bias sample x100 larger than that foreseen in Run-2
- Unique programme extending to the late 2020s
- Focus on rare –and high background– probes and their interaction with the medium (HF, charmonium, di-leptons)

Ongoing study for further upgrade aimed at forward physics

Run:225000 Timestamp:2015-06-03 09:21:39(UTC) Colliding system:p-p Energy: 13 TeV

EXTRA SLIDES

SQM2015, Dubna, 6-11.07.15

ALICE, CERN-LHCC-2013-024

4 |

ATLAS, CMS, LHCb: upgrades most relevant to HI

ATLAS

- Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
- Fast tracking trigger (LS2): high-multiplicity tracking
- Calorimeter and muon upgrades (LS2): electron, γ, muon triggers

CMS

- Upgrade of trigger and DAQ, L1 calorimeter trigger (LS1): enables L1 rejection at 95%, e.g. (after LS2) from 50 kHz to <3 kHz (HLT input)</p>
- New pixel tracker (YES15-16), then new tracker (LS3): tracking and btag
- Extension of forward muon system (LS2): muon acceptance
- Upgrade forward calorimeter (LS3): forward jets in HI
- LHCb (LS2)
 - New trackers (pixel, strip, scintillating fiber)
 - > Readout upgrade: up 40 MHz (pp) \rightarrow exploit full p-Pb luminosity

