



ALICE Overview

Michele Floris (CERN) on behalf of the ALICE Collaboration SQM, July 6 2015, Dubna

ALICE

- Study the **QGP** 
  - Transport and bulk properties
  - Microscopic structure
  - How it hadronizes
  - How "the medium" emerges from strong interaction
- Flavor plays a key role!
- Studying largest system @ highest energy not enough
  - √s dependence
  - System size dependence
    - Control for CNM effects

- Study the QGP
  - Transport and bulk properties
  - Microscopic structure
  - How it hadronizes
  - How "the medium" emerges from strong interaction
- Flavor plays a key role!
- Studying largest system @ highest energy not enough
  - √s dependence
  - System size dependence
    - Control for CNM effects

Tools: -Flow, Spectra & Correlations -"Calibrated" probes - Jets - Heavy Flavor -Particle yields & ratios -p-Pb and pp Collisions

- Study the QGP
  - Transport and bulk properties
  - Microscopic structure
  - How it hadronizes
  - How "the medium" emerges from strong interaction
- Flavor plays a key role!
- Studying largest system @ highest energy not enough
  - √s dependence
  - System size dependence
    - Control for CNM effects
- This talk: focus on is results and SQM15 contributions

Tools: -Flow, Spectra & Correlations -"Calibrated" probes - Jets - Heavy Flavor -Particle yields & ratios -p-Pb and pp Collisions

Ref to talk or arXiv

- Study the QGP
  - Transport and bulk properties
  - Microscopic structure
  - How it hadronizes
  - How "the medium" emerges from strong interaction
- Flavor plays a key role!
- Studying largest system @ highest energy not enough
  - √s dependence
  - System size dependence
    - Control for CNM effects
- This talk: focus on is results and SQM15 contributions

Tools: -Flow, Spectra & Correlations -"Calibrated" probes - Jets - Heavy Flavor -Particle yields & ratios -p-Pb and pp Collisions

### The ALICE Detector





### **The ALICE Detector**





### Flow and Bulk Properties

A. Ohlson, Thu 17:20 arXiv:1506.08032



### h-h correlations (the "ridge")



# Flow signals also measured in p-Pb

A. Ohlson, Thu 17:20 arXiv:1506.08032









Flow signals also measured in p-Pb

# Measurement covers 10 units of $\Delta \eta$ (1.5< $|\Delta \eta_{lab}|$ <5)!

A. Ohlson, Thu 17:20 arXiv:1506.08032



### h-h correlations (the "ridge")





Flow signals also measured in p-Pb

# Measurement covers 10 units of $\Delta \eta$ (1.5< $|\Delta \eta_{lab}|$ <5)!

#### Forward-µ – hadron correlations

A. Ohlson, Thu 17:20 arXiv:1506.08032





Similar  $p_T$  dependence in p-going and Pb-going directions

ر 1800 <sup>0</sup> 2PC,sub} ALICE Data, Pb-going Data, p-going p-Pb  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ AMPT, Pb-going V0S: (0-20%)-(60-100%) AMPT, p-going 0.06 0.04 0.02  $0^{\scriptscriptstyle L}_{\rm O}$ 0.5 1.5 2 2.5 3 3.5 1  $p_{\tau}$  (GeV/c)

~(16±6)% higher in the Pb-going direction

#### Forward-µ – hadron correlations

A. Ohlson, Thu 17:20 arXiv:1506.08032





#### Forward-µ – hadron correlations

A. Ohlson, Thu 17:20 arXiv:1506.08032





### **Baryon/Meson ratios**



B/M enhanced at intermediate  $p_T$  in central collisions Hydro?  $\rightarrow$  describes only rise Recombination?  $\rightarrow$  describes qualitatively shape (w/ flow)

7

ALICE

### Baryon/Meson ratios

D. Chinellato, Tue 9:30 G. Volpe, Thu 15:40, B. Guerzoni, Thu 16:00





B/M enhanced at intermediate  $p_T$  in central collisions **Hydro?**  $\rightarrow$  describes only rise **Recombination?**  $\rightarrow$  describes qualitatively shape (w/ flow) "Mini" enhancement in the 2 to Db

"Mini" enhancement in pp & p-Pb, not (yet?) reproduced in QCD models

### Origin of the B/M enhancement?



It's a mass effect! (in the most central collisions...)

F. Krizek, Fri 12:00

V. Riabov, Tue 18:00

# Origin of the B/M enhancement?



It's a mass effect! (in the most central collisions...)

F. Krizek, Fri 12:00

V. Riabov, Tue 18:00

### Origin of the B/M enhancement?





It's a mass effect! (in the most central collisions...)

It's not a jet effect!

# Energy loss

# Jet Modifications: broadening?

F. Krizek, DATE arXiv:1506.03984



### Jet Modifications: broadening?

F. Krizek, DATE arXiv:1506.03984



### No evidence of intra-jet broadening for R<0.5

### Jet Modifications: broadening?





No evidence of intra-jet broadening for R<0.5 No evidence of medium-induced acoplanarity No signal for large angle (Moliere) patron-medium scattering → Consistent with largely homogeneous medium

### **Jet Modification: fragmentation?**



ALICE



# $p_T \gtrsim 10 \text{ GeV/c:}$ suppression similar for all particles $\Leftrightarrow$ jet chemistry not modified

Similar  $R_{AA}^{\pi}$  at RHIC/LHC, despite vastly different d $\sigma$ /d $p_{T}$ 





# $\Delta E_{\rm g} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}?$ R<sub>AA</sub><sup>D</sup> < R<sub>AA</sub><sup>B</sup> (via non prompt J/ $\psi$ )!

First clear indication with mass dependent energy loss

Heavy Flavor energy loss





### $\Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$ ? R<sub>AA</sub><sup>D</sup> < R<sub>AA</sub><sup>B</sup> (via non prompt J/ $\psi$ )!

First clear indication with mass dependent energy loss

R. Bailhache, Thu 10:00, A. Festanti, Thu 17:00 A. Barbano, Thu 15:40, arXiv:1506.06604





### $\Delta E_{\rm g} > \Delta E_{\rm u,d,s} > \Delta E_{\rm c} > \Delta E_{\rm b}?$ RAA<sup>D</sup> < RAA<sup>B</sup> (via non prompt J/ψ)!

First clear indication with mass dependent energy loss Hint for increase in **D**<sub>s</sub> **R**<sub>AA</sub>



 $R_{\rm pPb}$  consistent with unity for:

charged hadrons, Jets, D mesons and HF decay electrons



Other measurements consistent with pp:

- di-jet k⊤
- Jet structure
- D-h correlations

ALI-PREL-80555



R<sub>pPb</sub> consistent with unity for:

charged hadrons, Jets, D mesons and HF decay electrons



Other measurements consistent with pp:

- di-jet k⊤
- Jet structure
- D-h correlations

ALI-PREL-80555

Multiplicity dependence?  $\rightarrow$  understand biases!

A. Toia, Thu 16:20 PRC91, 064905 (2015)

# Large fluctuations in pA $\Rightarrow$ large biases



A. Toia, Thu 16:20 PRC91, 064905 (2015)

Large fluctuations in pA  $\Rightarrow$  large biases



A. Toia, Thu 16:20 PRC91, 064905 (2015)



Large fluctuations in pA  $\Rightarrow$  large biases Introduce "Q<sub>pPb</sub>"  $Q_{pA}^{i} = \frac{dN_{pA}/dp_{T}}{\langle N_{coll} \rangle_{i} dN_{pp}/dp_{T}}$ 



 $\mathbf{Q}_{\mathsf{pPb}}$ ALICE p-Pb  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-5% 40-60% 2.5 5-10% 60-80% CL1 Syst. on <T\_>> 10-20% • 80-100% 20-40% Syst. on normalization 2 1.5 0.5 25 30 10 15 20 0 5 p<sub>T</sub> (GeV/c) mid-rapidity estimator & mid-rapidity spectra: largest bias

A. Toia, Thu 16:20 PRC91, 064905 (2015)



ALICE

Large fluctuations in pA  $\Rightarrow$  large biases







### Centrality biases in p-Pb

Least biased estimator:

- 1. Neutron Zero Degree Calorimeter (ZN)
- 2.  $\langle N_{coll} \rangle$  estimated with: dN/dq, yield at high  $p_T$ , yield on Pb side



 $Q_{pPb}$  consistent with unity at high  $p_T$  for all classes!

A. Toia, Thu 16:20

ALICE

PRC91, 064905 (2015)

### Cold Nuclear Matter Effects

p-going Pb-going arm µ arm Pb n œ<sup>2</sup>1.4 p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV ALICE (JHEP 02 (2014) 073): inclusive J/ψ→μ<sup>+</sup>μ<sup>-</sup>, 0<p\_<15 GeV/c  $L_{int}$  (-4.46< $y_{cms}$ <-2.96)= 5.8 nb<sup>-1</sup>,  $L_{int}$  (2.03< $y_{cms}$ <3.53)= 5.0 nb<sup>-1</sup> ALICE (arXiv:1503.07179): inclusive  $J/\psi \rightarrow e^+e^-$ ,  $p_2 > 0$ 1.2  $L_{int}$  (-1.37< $y_{cms}$ <0.43)= 51  $\mu b^{-1}$ global uncertainty = 3.4% 0.8 0.6 0.4 EPS09 NLO (Vogt) CGC (Fujii et al.) 0.2 ELoss, q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) EPS09 NLO + ELoss, q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) 0 -3 2 3 -2 -4 4 y<sub>cms</sub> ALI-DER-93181

 $J/\psi R_{AA}$  vs y consistent with shadowing +  $E_{loss}$ 

S. Weber, Thu 16:00 , A. Camejo, Thu 16:20

I. Arsene Thu 11:30

ALICE

S. Weber, Thu 16:00 , A. Camejo, Thu 16:20 p-going Pb-going µ arm arm Pb д РРЬ œ<sup>2</sup>1.4 p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV ALICE, p-Pb  $\sqrt{s_{NN}}$  = 5.02 TeV, inclusive J/ $\psi$ ,  $\psi$ (2S) $\rightarrow \mu^{+}\mu^{-}$ 1.8 ALICE (JHEP 02 (2014) 073): inclusive J/ψ→μ<sup>+</sup>μ<sup>-</sup>, 0<p\_<15 GeV/c **J**/ψ  $L_{int}$  (-4.46< $y_{cms}$ <-2.96)= 5.8 nb<sup>-1</sup>,  $L_{int}$  (2.03< $y_{cms}$ <3.53)= 5.0 nb<sup>-1</sup> 1.6 ψ(2S) ALICE (arXiv:1503.07179): inclusive  $J/\psi \rightarrow e^+e^-$ ,  $p_>0$ 1.2  $L_{int}$  (-1.37< $y_{cms}$ <0.43)= 51  $\mu b^{-1}$ 1.4 global uncertainty = 3.4% 1.2 0.8 1 0.8 0.6 0.6 0.4 EPS09 NLO (Vogt) 0.4 CGC (Fujii et al.) EPS09 NLO (Vogt) 0.2 ELoss, q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) ELoss with  $q_{a}=0.075 \text{ GeV}^{2}/\text{fm}$  (Arleo et al.) 0.2 EPS09 NLO + ELoss, q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) EPS09 NLO + ELoss with  $q_2 = 0.055 \text{ GeV}^2/\text{fm}$  (Arleo et al.) 0 0 2 3 2 -3 -3 3 -4 -2 y<sub>cms</sub>

ALI-DER-93181

### $J/\psi R_{AA}$ vs y consistent with shadowing + $E_{loss}$

ALI-PUB-91072

 $\psi(2S)$  puzzling  $\rightarrow$  final state effect (co-movers?)

y<sub>cms</sub>

I. Arsene Thu 11:30

p-going Pb-going µ arm arm Pb œ<sup>2</sup>1.4 д РРb p-Pb √s<sub>NN</sub>= 5.02 TeV ALICE, p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi$ ,  $\psi$ (2S) $\rightarrow \mu^{+}\mu^{-}$ 1.8 ALICE (JHEP 02 (2014) 073): inclusive J/ψ→μ<sup>+</sup>μ<sup>-</sup>, 0<p\_<15 GeV/c **J**/ψ  $L_{int}$  (-4.46< $y_{cms}$ <-2.96)= 5.8 nb<sup>-1</sup>,  $L_{int}$  (2.03< $y_{cms}$ <3.53)= 5.0 nb<sup>-1</sup> 1.6 ψ(2S) ALICE (arXiv:1503.07179): inclusive  $J/\psi \rightarrow e^+e^-$ ,  $p_>0$ 1.2  $L_{int}$  (-1.37< $y_{cms}$ <0.43)= 51  $\mu b^{-1}$ 1.4 global uncertainty = 3.4% 1.2 0.8 0.8 0.6 0.6 0.4 EPS09 NLO (Vogt) 0.4 CGC (Fujii et al.) 0.2 Comover Interaction Approach (E. Ferreiro, arXiv:1411.0549) ELoss, q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) 0.2 EPS09 NLO + ELoss, q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) ψ**(2S**) 0 0 2 3 -3 -2 3 5 -3 -4 4 y<sub>cms</sub> y<sub>cms</sub> ALI-DER-93792 ALI-DER-93181

 $J/\psi R_{AA}$  vs y consistent with shadowing +  $E_{loss}$ 

 $\psi(2S)$  puzzling  $\rightarrow$  final state effect (co-movers?)

I. Arsene Thu 11:30

S. Weber, Thu 16:00 , A. Camejo, Thu 16:20

S. Weber, Thu 16:00 , A. Camejo, Thu 16:20 p-going Pb-going no shadowing shadowing µ arm arm strong co-movers little co-movers Pb œ<sup>2</sup>1.4 д РРb p-Pb √s<sub>NN</sub>= 5.02 TeV ALICE, p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi$ ,  $\psi$ (2S) $\rightarrow \mu^{+}\mu^{-}$ 1.8 ALICE (JHEP 02 (2014) 073): inclusive J/ψ→μ<sup>+</sup>μ<sup>-</sup>, 0<p\_<15 GeV/c **J**/ψ  $L_{int}$  (-4.46< $y_{cms}$ <-2.96)= 5.8 nb<sup>-1</sup>,  $L_{int}$  (2.03< $y_{cms}$ <3.53)= 5.0 nb<sup>-1</sup> 1.6 ψ(2S) ALICE (arXiv:1503.07179): inclusive  $J/\psi \rightarrow e^+e^-$ ,  $p_>0$ 1.2  $L_{int}$  (-1.37< $y_{cms}$ <0.43)= 51  $\mu b^{-1}$ global uncertainty = 3.4% 1.4 1.2 0.8 0.8 0.6 0.6 0.4 EPS09 NLO (Vogt) 0.4 CGC (Fujii et al.) 0.2 Comover Interaction Approach (E. Ferreiro, arXiv:1411.0549) ELoss, q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) 0.2 EPS09 NLO + ELoss, q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) ψ(2S) 0 0 2 3 -3 -2 3 5 -3 -4 4 y<sub>cms</sub> **Y**<sub>cms</sub> ALI-DER-93792 ALI-DER-93181

 $J/\psi R_{AA}$  vs y consistent with shadowing +  $E_{loss}$ 

 $\psi(2S)$  puzzling  $\rightarrow$  final state effect (co-movers?)

I. Arsene Thu 11:30

# Anti-Shadowing

J/W QpPb

Shadowing



**Shadowing** effects reproduce the data at forward and backward rapidity

Data better described by models w/out co-movers

Pure energy loss scenario predicts a flatter trend at backward rapidity

O. Villalobos Baillie, Fri 15:40

# ALICE

### Ultra peripheral collisions

# Another way to get a handle on shadowing





Models incorporating (moderate) shadowing give a better description of data

### Photo-production at b < 2×R?



EL-93199

20

NEU

### Hadrons

### Strangeness in p-Pb collisions

 $\Xi/\pi$  $\Omega/\pi$ <u>×10<sup>-3</sup></u> ×10<sup>-3</sup> μ  $(\pi + \pi^{+})$ ALICE Preliminary ALICE Preliminary + GSI model T<sub>ch</sub> = 156 MeV <u>΄</u>κ 0.8 G THERMUS 2.3 model T<sub>ch</sub> = 155 MeV ניז] + + 0.6 [1] ALICE ģ ALICE ₽₽ p-Pb  $\sqrt{s_{NN}}$  = 5.02 TeV p-Pb V s<sub>NN</sub> = 5.02 TeV V0A Mult. Evt. Classes (Pb-side) 0.4 V0A Mult. Evt. Classes (Pb-side) pp vs = 900 GeV GSI model  $T_{ch} = 156 \text{ MeV}$ pp *\s* = 7 TeV pp  $\sqrt{s} = 7 \text{ TeV}$ 0.2 THERMUS 2.3 model Pb-Pb  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Pb-Pb  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ T<sub>ch</sub> = 155 MeV 10<sup>2</sup>  $10^{3}$ 10<sup>2</sup>  $10^{3}$ 10 10

ALI-PREL-73440

ALI-PREL-73436

Strangeness enhancement in p-Pb collisions!

- $\Xi$  reaches the Pb-Pb (Grand Canonical?) value
- Lift of canonical suppression? Poor GC fit in p-Pb

 $\langle \mathrm{dN}_{\mathrm{ch}}/\mathrm{d\eta}_{\mathrm{lab}} 
angle_{|\eta_{\mathrm{lab}}|<\,0.5}$ 

 $\left<\mathrm{dN}_{\mathrm{ch}}\!/\mathrm{d\eta}_{\mathrm{lab}}\right>_{\left|\eta_{\mathrm{lab}}\right|<\,0.5}$ 

M. Nicassio, Fri 17:20

ALICE





















23





23









Wheaton et al, Comput.Phys.Commun, 180 84 Andronic et al, PLB 673 142



 $R_{inv}$  decreases & Approximate  $m_T$  scaling

### 1D femto radii with PID





 $R_{inv}$  decreases & Approximate  $m_T$  scaling  $\Rightarrow$  Consistent with Hydro, hadronic phase required (HKM)?

ALICE

### Effects in the hadronic phase?



ALI-PUB-67825

K\*/K Reduction suggests rescattering of daughters in hadronic phase

#### V. Riabov, Tue 18:00

### Effects in the hadronic phase?



ALI-PUB-67825

K\*/K Reduction suggests rescattering of daughters in hadronic phase Also responsible for p depletion (centrality dependence suggestive)? What about nuclei?







# dN/dy follow expected exponential fall

~300x penalty factor for each additional nucleon

Thermal model provides a **baseline for exotica** searches (upper limits for  $\Lambda\Lambda$ ,  $\Lambda$ n)





# dN/dy follow expected exponential fall

~300x penalty factor for each additional nucleon

Thermal model provides a **baseline for exotica** searches (upper limits for ΛΛ, Λη)

### More SQM15 Results





### Where are we?



- Flow & collectivity
  - Long range correlations in p-Pb extend to large rapidities
    - Hydro and role of initial state?
  - Origin of the baryon/meson enhancement?
    - Driven by mass, not seen in jets
- Small systems and initial state
  - CNM effects
  - Ultra-peripheral collisions
  - Control of biases is crucial

- High  $p_T$  suppression
  - $R_{AA}^{\pi} LHC \simeq R_{AA}^{\pi} RHIC$
  - h-jet results: no modification of jet structure (R < 0.5) and no evidence for Moliere scattering
    - Despite jet R<sub>AA</sub> < 1
  - Indication of mass dependent  $E_{\text{loss}}$ :  $R_{\text{AA}}^{\text{D-meson}} < R_{\text{AA}}^{\text{non-prompt J/}\psi}$
- Bulk particle production
  - Strangeness enhancement in small systems
  - Constraints on the role of hadronic phase
  - Extended study of LF zoo (nuclei and searches for exotica)

Where are we going?





Run III: See ALICE upgrade talks A. Dainese, Sat 10:00, F. Fionda, Thu 18:00



















