Hyper nucleus production in heavy ion collision experiments

Christophe Rappold ¹ for the HypHI collaboration

¹GSI - Darmstadt, Germany

Strangeness in Quark Matter 2015 07 July 2015

Quick Introduction to hypernuclear physics

Ultra relativistic region

relativistic region

Conlusion

Quick Introduction to hypernuclear physics

Ultra relativistic region

relativistic region

Conlusion

What and Why Hypernucleus ?

- Classic example in Nuclear Physics: Neutron Star
 - Core of neutron star \rightarrow strangeness ?
 - EoS of hyper-matter : Potential of hyperons
 - No direct study of hyperon-nucleon interaction
- Yet hypernucleus can also be a probe to phase transition : QGP, Hadron gaz.

But, what is an hypernucleus ?

 Bound state of p,n and hyperon (Λ, Ξ, Σ) : ^A_YZ

And How ?

- Common way : pion, kaon, e⁻ beam on fixed target.
- More recent : with heavy ion beam !

hypernuclei with ion beam

Observables on hypernuclear production in ion collisions

First "Classic" observables :

- > Yields, Cross section, Multiplicity of the observed hypernuclei
- Absolute Or within Acceptance, also differential (y0, Pt)
 - \blacktriangleright \rightarrow Useful to compare QMD models (dynamics of the reaction)
- Yield ratios : to Λ yield, to nuclear yield.
 - More sensitive to the dynamics than cross section.
 - Can be easier to extract from data (sometime eff. correction cancels out)

One special ratio : "Strangeness Population Factor" : Double ratio ${\rm S}_3={}^3_{\Lambda}{\rm H}/{}^3{\rm He}\cdot {\rm p}/\Lambda$

Introduce by AGS (E864)

GSI

- With STAR, found out: nice probe to the phase transition and the QGP formation.
 - Theoretical calculation demonstration

[S. Zhang et al., Phys. Lett. B 684, 224 (2010)]

C. Rappold

Hypernuclear production

Quick Introduction to hypernuclear physics

Ultra relativistic region

relativistic region

Conlusion

Mid-rapidity, freeze out : ALICE results

C. Rappold

Hypernuclear production

Mid-rapidity, freeze out : ALICE results

C. Rappold GSI

Hypernuclear production

07/07/2015 9 / 20

Mid-rapidity, freeze out : STAR results

C. Rappold

Mid-rapidity, freeze out : STAR results

Coalescence or not coalescence ?

[ALICE collaboration, arXiv:1506.08453 (2015)]

- Coalescence: not clear anymore.
- Hadronization at the freeze-out.

Quick Introduction to hypernuclear physics

Ultra relativistic region

relativistic region

Conlusion

Mid-rapidity, freeze out : AGS E864 results

Fixed target, Reaction: Au+Pt @ 11.5 AGeV/c or $\sqrt{s_{NN}} = 4.84$ GeV

- ³_ΛH signal : 2σ in rapidity range :[1.6, 2.6] (y_{cm} ~ 2.3)
- ${}^{4}_{\Lambda}H$: upper limit.
- First to use the ratio $S_3 = {}^3_{\Lambda} \text{H}/{}^3 \text{He} \cdot \text{p}/\Lambda$ and $S_4 = {}^4_{\Lambda} \text{H}/{}^4 \text{He} \cdot \text{p}/\Lambda$

•
$$S_3 = 0.36 \pm 0.26$$

Spectator region (target) : FOPI & HADES results :

HADES: Ar+KCI @ 1.76AGeV or $\sqrt{s_{NN}} = 2.61 \text{ GeV}$

GSI

 $^{3}_{\Lambda}\text{H}/\Lambda = 2.5 \pm 0.3 \cdot 10^{-2}$

FOPI : Ni+Ni @ 1.91 AGeV or $\sqrt{s_{NN}} = 2.67$ GeV

- Rapidity : [0.2, 0.4] (y_{cm} = 0.9)
 & Pt/m [0.2, 0.4]
 - ${}^{3}_{\Lambda}H/\Lambda = 0.52 \pm 0.04$
- Rapidity : [0.15, 0.4] (y_{cm} = 0.9)
 & Pt/m [0.15, 0.35]

•
$${}^4_{\Lambda}H/\Lambda\sim 0.09$$

C. Rappold

Spectator region (projectile) : HypHI results

Fixed target, Reaction : ${}^{6}\text{Li}+{}^{12}\text{C}$ @ 2 AGeV or $\sqrt{s_{NN}} = 2.7$ GeV

Spectator region (projectile) : HypHI results

Production cross section & multiplicity :

[C. Rappold et al., Phys.Lett. B747 (2015) 129]

Spectator region : HypHI results

Inverse slope *T*, m_t spectrum : $f(m_t - m_0) = K_1/T_1 e^{-(m_t - m_0)/T_1} + K_2/T_2 e^{-(m_t - m_0)/T_2}$

- for ${}^{4}_{\Lambda}$ H : $T_1 \sim 6 \pm 2$ MeV & $T_2 \sim 13 \pm 6$ MeV
- very similar to multi-fragmentation ALADIN results

[T. Odeh et al., Phys. Rev. Lett. 84 (2000) 4557]

and Goldhaber model : [A.S. Goldhaber, Phys. Lett. B 53 (1974) 306]

C. Rappold

GSI

Hypernuclear production

Quick Introduction to hypernuclear physics

Ultra relativistic region

relativistic region

Conlusion

Conclusion

In ultra relativistic regime :

- From ALICE and STAR : similar tendency.
- yet sensitive observables give different conclusion on processes.
- Hadronization at the freeze-out vs coalescence
- Coalescence dependent to the volume and locality within QGP
- More precise measurements will be needed.

In relativistic regime :

- mid-rapidity: similar story: freeze-out.
- spectators: different production mechanism
 - coalescence of mid-rapidity Λ with spectator fragments.
 - FOPI : \sim target region / HypHI : spectator region
 - probe to what happen between the participants & spectator !
 - ex: Yield ratio sensitive to time interval of the interaction.

Conclusion

Mock-up figure of S_3 factor with all available results:

C. Rappold

GSI

Hypernuclear production

07/07/2015 19 / 20

Conclusion

What next ?

- from ALICE & STAR :
 - Next hypernuclei, A=4 will be difficult to measure (penalty factor)
 - ► Might focus A=3 hypernuclei with different baryons.
- FOPI : work in progress for finalizing analysis.
- ► HypHI :
 - Second exp. performed ²⁰Ne+¹²C @ 2 AGeV
 - spectroscopy: Λ analysis done ! ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ done !
 - ${}^{7}_{\Lambda}$ Li and ${}^{6}_{\Lambda}$ He analysis in progress.
 - reaction aspect: to be started.
 - Next exp. on proton rich hypernuclei.

FAIR & NICA : excellent opportunities for the hypernuclear study !