SQM 2015 Dubna (Russia) July 6-11, 2015

Production of strange hadrons at LHC energies measured with the ALICE detector

Maria Nicassio (GSI, Darmstadt) on behalf of the **ALICE** collaboration

Maria Nicassio

SQM 2015 - 10/07/2015

ALICE

Strangeness measurements in the three systems

Results and discussion

- particle spectra
- \circ particle ratios vs $p_{\rm T}$
 - ✓ baryon-to-meson
 - ✓ nuclear modification factors

\circ elliptic flow

- $\ensuremath{\circ}$ ratios of yield to pions
 - \checkmark vs event multiplicity
 - ✓ fit with statistical hadronization models

Reconstruction in ALICE

- Charged hadron tracks reconstructed in the central barrel tracking system
- Topological reconstruction of decays (geometrical and kinematical selection criteria on reconstructed tracks)
 - V-shaped topology for ${\rm K^0}_{\rm S}$ and Λ
 - cascade topology for Ξ and Ω
- TPC for particle identification of candidate daughter tracks

Inner Tracking System:

- six silicon layers
- |η|< 0.9
- 3.9 < r(cm) < 43

Time Projection Chamber:

- |η|< 0.9
- 85 < r(cm) < 247

Reconstruction in ALICE

Transverse momentum spectra in pp collisions

In general Monte Carlo underpredicts multi-strange yields at intermediate p_{T}

- $\,\circ\,$ deviation stronger for higher strangeness content
- \circ PYTHIA tuned (Perugia 2011) describes data within a factor 2 to 4

Transverse momentum spectra in p-Pb collisions

Ξ

Ω

Individual BW fits to extract yields

Mean p_{T} increases with increasing event multiplicity

 $\,\circ\,$ similar behaviour in p-Pb and Pb-Pb collisions

Transverse momentum spectra in Pb-Pb collisions

Mean p_{T} increases with increasing event multiplicity

 $\,\circ\,$ similar behaviour in p-Pb and Pb-Pb collisions

More in B. Guerzoni's talk

 $\,\circ\,$ in Pb-Pb collisions described with hydrodynamic models: collective expansion

Baryon-to-meson ratio

 p/π results in G. Volpe's talk

Maximum in the ratio of baryons to mesons at intermediate p_T also observed in p-Pb collisions

- o same pattern with increasing multiplicity as in Pb-Pb, different magnitude
- in Pb-Pb collisions explained with radial flow (p_T <2 GeV/c), quark recombination (2< p_T <5 GeV/c), fragmentation (p_T >5 GeV/c)

Comparing spectra in different systems: R_{AA}

Intermediate p_{T} :

- $\,\circ\,$ maximum shifts with the mass of the particle: radial flow
- $\circ~$ enhancement for $\Omega\text{:}$ strangeness enhancement in addition to flow

High p_{T} : suppression tends to be the same for all particles

Comparing spectra in different systems: R_{pPb}

Intermediate p_{T} :

- $\,\circ\,$ mass ordering similar to Pb-Pb collisions
- $\,\circ\,$ enhancement for p and Ξ

High p_{T} : binary N_{coll} scaling, no suppression

 $\,\circ\,$ suppression in Pb-Pb collisions is a hot nuclear matter effect

Elliptic flow in Pb-Pb collisions

"Strangeness enhancement"

ALI-PUB-78347

Phys. Lett. B 728 (2014) 216

Higher production yields with respect to pp collisions at the same energy when normalized to the number of participants

- observed at lower energy (already at AGS)
- $_{\odot}\,$ hierarchy based on the strangeness content of the particle
- decreasing as energy increases

"Strangeness enhancement"

Relative yields to pions disentagle effects contributing to the enhancement

- actual increase in AA vs pp
- trend with energy due to the increase of relative yields in pp collisions

Yields: ratios to pions vs multiplicity

Increase of yields relative to pions with event multiplicity in p-Pb collisions

 \circ similar increase in AA collisions at lower energy

ALICE

Yields: ratios to pions vs multiplicity

Increase of yields relative to pions with event multiplicity in p-Pb collisions

- \circ values in between those of pp and Pb-Pb collisions
- highest multiplicity values in p-Pb collisions are compatible with central Pb-Pb values and GC limits
- $\ensuremath{\circ}$ relative increase scales with the power of strangeness quantum number

"Strangeness enhancement" consistent with lifting of canonical suppression

Yields and statistical hadronization models

Fit of p-Pb data at high multiplicity with Grand Canonical (GC) and Strangeness Canonical (SC) treatment

- \circ similar results
 - the extracted temperature is robust
 - γ_s is compatible with unity
 - r_c is compatible with r
- \circ deviations of $\Lambda,$ Ξ and Ω yields independent of the schema of the fit

More in B. Guerzoni's talk

Strangeness production measured in three systems

- event multiplicity increasing over 3 orders of magnitude
- o similar patterns observed in p-Pb and Pb-Pb collisions with increasing multiplicity
 - hardening of transverse momentum spectra
 - production of baryons compared to mesons
 - mass ordering
 - increase in ratio to pions

Conclusions and outlook

- \circ suppression at high p_{T} in Pb-Pb collisions is a hot nuclear matter effect
- increase of relative strangeness production consistent with progressive lifting of canonical suppression
- \circ is there radial flow expansion in p-Pb collisions?
- \circ more statistics and higher energy in Run 2 to reach higher p_{T} and multiplicities

Backup slides

Differential studies in event multiplicity also in p-Pb collisions

- \circ clear evolution of observables
- systematic comparison of systems with different size and event activity
- main estimator: charge deposited in the VZERO detector, proportional to the number of particles produced in the event

- **VZERO** counters:
- two arrays of 32 scintillator tiles
- 2.8<η< 5.1 (VZERO-A)
- -3.7<η<-1.7 (VZERO-C)

Reconstruction in ALICE

Strange and multi-strange hadrons decaying into charged hadrons only in the final state

	Quark content	Branching ratio (%)	Decay length $c\tau$ (cm)
$K_S^0 \rightarrow \pi^+ \pi^-$	(ds+ds)/v2	69.2	2.68
$\Lambda \rightarrow p\pi^-$ + c.c.	uds	63.9	7.89
$\Xi^- \rightarrow \Lambda \pi^- \rightarrow p \pi^- \pi^- + c.c.$	dss	63.9	4.91
$\Omega^- \rightarrow \Lambda K^- \rightarrow p \pi^- K^- + c.c.$	SSS	43.3	2.46

Hydrodinamic inspired model which assumes locally thermalized, collectively expanding source undergoing a common instantaneous freeze-out

- \circ free parameters in the fit: kinetic freeze-out temperature, transverse expansion velocity and exponent of the velocity profile (T, β_T; n) and a normalization parameter
- $\,\circ\,$ gives the best fit to individual particles over the full p_{T} range
- simultaneous fits to investigate common kinetic freeze-out of the system (but parameters depend heavily on fit ranges)
- from PHOBOS evidence that this parametrization gives a good description to very low p_{T}

E. Schnedermann, J. Sollfrank and U. Heinz, Phys. Rev. C 48, 2462 (1993)

arXiv:1405.4632, accepted for publication in JHEP

Maria Nicassio

SQM 2015 - 10/07/2015

Yields and statistical hadronization models

Good description of yield ratios from SPS to LHC with the statistical hadronization model

Strangeness conservation implemented

- o in large systems (central AA collisions) using grand canonical (GC) formalism
- in small systems (pp, pA) using canonical formalism + extra strangeness suppression with two alternative descriptions
 - γ_s : fugacity, deviations of strange hadrons yields from equilibrium values
 - R_c: radius of the strangeness correlation volume within which strangeness is conserved exactly (R_c<R)