

SQM 2015

15th international conference on strangeness in quark matter 6th – 11th July, Dubna, Russia

Light flavour hadron production at intermediate and high $p_{\rm T}$ measured with the ALICE detector

Giacomo Volpe* for the ALICE collaboration

*Wigner RCP institute, Budapest, Hungary

Outline

ALICE goal

- □ Charged hadrons identification at intermediate (\approx 2 GeV/*c* 10 GeV/*c*) and high p_{T} (\gtrsim 10 GeV/*c*) with ALICE
- pp results: comparison to NLO pQCD calculations
- Pb-Pb results
- p-Pb results
- nuclear modification factor in Pb-Pb and p-Pb collisions
- Conclusions

ALICE goal

ALICE is designed to study the physics of strongly interacting matter under extremely **ALICE** high temperature and energy densities to investigate the properties of the quark-gluon plasma.

- Proton-proton collisions:
 - high energy QCD reference.
 - collected pp data at √s = 0.9 TeV, 2.76 TeV, 7 TeV,
 8 TeV (2009, 2010, 2011, 2012)
- proton-nucleus collisions:
 - initial state/cold nuclear matter.
 - collected p-Pb data at $Vs_{NN} = 5.02$ TeV (2012, 2013)
- nucleus-nucleus collisions:
 - quark-gluon plasma formation!
 - collected Pb-Pb data at $Vs_{NN} = 2.76$ TeV (2010, 2011)

ALICE has measured the yields of produced charged pions, kaons and protons in a wide momentum range and in several colliding systems.

- ALICE exploits the combination of different particle identification (PID) tecniques
- Energy loss (ITS, TPC)
- Time of flight (TOF)
- Cherenkov radiation (HMPID)
- Transition radiation (TRD)
- Calorimetry (EMCal/DCal, PHOS)
- Topological PID

high p_{T}

Intermediate,

ALICE exploits the combination of different particle identification (PID) tecniques

- Energy loss (ITS, TPC)
- Time of flight (TOF)
- Cherenkov radiation (HMPID)
- Transition radiation (TRD)
- Calorimetry (EMCal/DCal, PHOS)
- Topological PID

- HMPID consists of seven RICH counters; liquid C_6F_{14} Cherenkov radiator
- PID performed by means of statistical unfolding
- Cherenkov emission angle measurements enable 3σ separation for π/k up to 3 GeV/*c* and for K/p up to 5 GeV/c

- Up to 159 pad rows in Ne-CO₂ gas mixture: $\sigma_{dE/dx} \approx 5\%$.
- A truncated mean dE/dx is calculated and used for a wide range of momentum.
- The largest separation is achieved at low- $p_{\rm T}$ ($p_{\rm T} \le 0.7$ GeV/c).
- for higher $p_{\rm T}$ (3-20 GeV/c) statistical PID is done exploiting the features of dE/dx in the relativistic rise regime.

$p_{\rm T}$ pectra in pp collisions: comparison to **NLO pQCD calculations**

DSS: de Florian, Sassot, and Stratmann, PRD 75 (2007) 114010 and PRD 76 (2007) 074033

KKP: Kniehl, Kramer, and Potter, NPB 582 (2000) 514

KRE: Kretzer, PRD 62 (2000) 054001

- The same Kretzer Fragmentation Functions (KRE) describe well the charged particle spectra (NPB 883 (2014) 615) and also the identified spectra.
- Kaon spectra are well described by all sets of FFs. Protons have largest differences.
- The pQCD understanding of particle spectra is also important to determine the relative weight of quark and gluon jets in energy loss calculations 6

LICE

$p_{\rm T}$ spectra in Pb-Pb collsions

- For p_T < 3 GeV/c a hardening of the spectra is observed going from peripheral to central events. This effect is mass dependent and is characteristic of hydrodynamic flow
- For high p_T (≥ 10 GeV/c) the spectra follow a power law shape as expected from pQCD

ALICE

Intermediate p_{τ} : comparison with EPOS

FPOS model 2.17-3

K. Werner, PRL 109, 102301 (2012) "fluidjet interaction". Works over the entire p_{τ} range.

Hydrodynamical phase + hadronization processes at intermediate p_{τ} where the interaction between bulk matter and jets is considered

Baryon-meson effect where a quenched jet hadronizes with flowing medium quarks

- centrality dependence well reproduced, even for very peripheral events.
- magnitude of both the p-to- π and the K-to- π peak is overpredicted.

Intermediate p_{T} : comparison to RHIC

- The p-to-π peak at LHC is approximately 20% larger than at RHIC, consistent with an average larger radial flow velocity.
- The K-to- π ratio measured by PHENIX is similar to the ALICE one

ALICE

Particle ratios in Pb-Pb collisions at high p-

How similar are the high p_{T} ratios vs collisions centrality?!

- We have computed the integrated particle ratios for $10 < p_T < 20$ GeV/c.
 - charged particle tracking systematic uncertainty cancels
 - K-to- π (p-to- π) ratio as a function of N_{part} is constant within the systematic uncertainty of $\approx 10\%$ ($\approx 20\%$) and consistent with the pp value (parton fragmentation in the vacuum).

$p_{\rm T}$ spectra in p-Pb collisions

- Hardening with multiplicity and particle mass
- Reminiscent of observed effects in Pb-Pb
 - Attributed to radial flow/recombination
 - In hydrodynamic picture particles are pushed by the expanding hot medium
 - Sensitive to pressure gradient and particle mass
 - Indication for collective effects in p-Pb?!

Results for low *p*_T: **ALICE, PLB 728 (2014) 25-38**

ALICE

Particle ratios in p-Pb collisions

- p-to-π ratio:
 - shows a peak, which is more pronounced for higher multiplicities
 - drops to 0.1 at high p_T (as in Pb-Pb)
- K-to-π ratio:
 - saturates at 0.5 for high p_{T} (as in Pb-Pb)
 - does not shows strong multiplicity dependence

The nuclear modification factor: R_{AA}

- For $p_T < \approx 8 10 \text{ GeV}/c$: R_{AA} for π and K are compatible and are smaller than R_{AA} for p.
- At high p_T : R_{AA} for π , K and p are compatible.

The pion R_{AA} at RHIC and at LHC

- ALICE results are below the PHENIX values
- Centrality evolution very similar
- Energy loss is "scaled up" at the LHC
 - the pp spectra at LHC energies are significantly harder, so a larger energy loss is needed to get a similar R_{AA} .

ALICE

Nuclear modification factor: R_{pPb}

• pp reference at $\sqrt{s_{NN}} = 5.02$ TeV is obtained interpolating available data (2.76 TeV and 7 TeV)

• Power-law fit: $(\sqrt{s_{NN}})^{\alpha}$

- Protons show peak at intermediate $p_{\rm T}$
- $R_{\rm pPb}$ of π and K not show peak and flat above 2 GeV/*c*
- mass ordering in the Cronin peak, strong enhancement of protons
- no suppression at high $p_{\rm T}$ (> 8-10 GeV/c)

 R_{pPb} vs centrality will be show in the talk of A. Toia!!

Conclusions

- Pions, kaons and protons production at intermediate and high p_T measured by ALICE in pp, p-Pb and Pb-Pb collisions has been presented
- NLO pQCD calculations for π, K, p production in pp collisions favors the Kretzer Fragmentation Functions
- The intermediate p_T region ($\approx 2 < p_T < \approx 8 10$ GeV/c) reveals some complications in the description of the transition from soft regime to partons fragmentation
- Nuclear modification factor in Pb-Pb collisions for high p_T (> ≈ 10 GeV/c) does not depend on particle species:
 - chemical composition of leading particles from jets in the medium is similar to that of vacuum jets
- Nuclear modification factor in p-Pb collisions:
 - mass ordering in the Cronin peak, strong enhancement of protons
 - no suppression at high $p_T \rightarrow$ suppression observed in central Pb-Pb collisions is not due to an initial-state effect but rather to a fingerprint of the hot matter created in heavy ion collisions

Backup

ALICE-HMPID detector

ALICE

• The ALICE-HMPID (High Momentum Particle Identification Detector) performs charged particle identification by means of the measurement of the emission angle of Cherenkov radiation and of the momentum information provided by the tracking devices.

• It consists of seven identical proximity focusing RICH (Ring Imaging Cherenkov) counters.

- liquid C₆F₁₄ Cherenkov radiator
- Cherenkov emission angle measurements enable 3σ separation for p/k up to 3 GeV/c and for K/p up to 5 GeV/c

 PID range: π/Κ: 1.5 – 4 GeV/c p: 1.5 - 6 GeV/c

18

ALICE-HMPID detector

- The PID responses for π , K, and p are Gaussians and independent of centrality.
- The background is caused by wrongly assigned rings, well reproduced by MC. It is described by a 6th degree polynomial. The small shoulder at $\theta_{ch} \approx 0.7$ rad which is an effect of the chamber geometry.

ALICE-TPC detector

ALICE TPC LAYOUT

ALICE 60-80% Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}, |\eta| < 0.2$ unit) 85 0.09 (arb. 80 Counts 0.00 dE/dx (arb. unit) 0.05 0.04 55 0.03 50 0.02 0.01

- Up to 159 pad rows in Ne-CO₂ gas mixture: $\sigma_{dE/dx} \approx$ 5%.
- The ALICE TPC provides fully contained charge particle tracks for $|\eta| < 0.8$
- Each of the tracks also has a specific energy loss dE/ dx usable for PID
- for high p_{T} (3-20 GeV/c) statistical PID is done exploiting the features of dE/dx in the relativistic rise regime.

ALICE-TPC detector

The PID responses for π , K, and p are Gaussians (e is < 1%). The means and widths are fixed to the calibrated values.

Spectra combination

ALICE Lower p_{T} results (ITS+TPC +TOF) are from PRC 88 (2013) 044910.

Measurements are combined using a weighted average where the weights are the systematic uncertainties (except for a common 3% uncertainty that is subtracted and directly added to the final spectrum).

Calibrating the dE/dx response

The d*E*/dx response is calibrated using tracks identified from their time-of-flight (TOF) or topology (V⁰s and Υ -conversions)

The relative particle composition as a function of p_{τ}

The fraction of π , K, and p are extracted for each $|\eta|$ slice and then averaged for $|\eta| < 0.8$. The final spectra are essentially obtained by multiplying with the invariant charge particle yields.

ALICE $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

AL R. Werner, PRL 109, 102301 (2012) "fluid-jet interaction"

"Considering transverse fluid velocities up to 0.7*c*, and thermal parton momentum distributions, one may get a "push" of a couple of GeV to be added to the transverse momentum of the string segment. This will be a crucial effect for intermediate p_{T} jet hadrons."

Charged particle PID in ALICE (central barrel)

5/03/2013

ai tce

18/05/2011

20

p (GeV/c)

3

4 ^p (GeV/c) 26

2

p (GeV/c)

300 200

100

0.07 0.1

0.2 0.3 0.4

The ALICE experiment is optimized for charged particle tracking and hadron identification for |n|<0.8

Systematic uncertainties of TPC dE/dx method

The uncertainty on the <d*E*/d*x*> parametrizaton is estimated from the deviations of the calibrations (similar for all centralities)

The fit constraints are randomly varied using these uncertainties (and the resolution σ) to obtain the syst. uncert. on the fractions

Bulk production: low p_{T} spectra

- Hydrodynamic models describe well the spectra in central Pb-Pb collisions
- The same models typically fail to describe the p_{T} spectra in peripheral collision²⁸

Particle ratios compared to models

- Kraków: PRC85, 064915 (2012)
- HKM: PRC87, 024914 (2013)
- Fries: PRL90, 202303 (2003) and private communication
- EPOS: PRL109, 102301 (2012) and private communications

Kraków+HKM: hydrodynamic (low p_T) models Fries: recombination 3 quarks \rightarrow baryon, 2 quarks \rightarrow meson EPOS: hydrodynamics (low p_T) \rightarrow medium modified fragmentation for quenched jets (intermediate p_T) \rightarrow vacuum fragmentation (high p_T)

p/π ratio in peak-bulk

Pb-Pb, $(s_{NN} = 2.76 \text{TeV}, 0.10\% \text{ central})$

When the p/π ratio in the peak is corrected for bulk effects using an η gap one finds that the ratio is dominated by the bulk. So the ratio does not seem to be driven by hard physics. Why do we expect particle species dependent modifications even at higher p_T ?

- Large effects at intermediate p_{T} does this effect just disappear?
- The low value of R_{AA} suggests that most hard partons interacts strongly with the medium

S. Sapeta and U.A. Wiedemann, Eur.Phys.J. C55 (2008) 293:

- Indirect
 - "in all models of radiative parton energy loss, the interaction of a parent parton with the QCD medium transfers color between partonic projectile and target. <u>This changes the color flow in the parton shower and is thus likely to affect hadronization</u>."
- Direct
 - "In addition, flavour or baryon number could be exchanged between medium and projectile."

A general model with particle species dependent modifications

- Effect <u>inside jet</u>
- But for p_T >> 8 GeV/c we expect all hadrons to belong to jets
- Prediction incompatible with data
- Question: what do we learn about the interaction between parton and medium from this and similar models that are ruled out

