DYNAMICAL UPSILON-SUPPRESSION IN THE STOCHASTIC-SCHRÖDINGER APPROACH

Roland Katz

SQM 2015 Dubna – 7th of July 2015 PhD supervisor: P.B. Gossiaux

In few words ?

Initial quasi stationary Sequential Suppression assumption (Matsui & Satz 86)

Final quasi stationary **Statistical Hadronisation** assumption (Andronic, Braun-Munzinger & Stachel)

Dynamical Models implicit hope to measure T above Tc

→ an effective dynamical point of view :

✓ QGP genuine time dependent scenario
 ✓ quantum description of the QQ
 ✓ binding potentials, screening, thermalisation

Summary

Schrödinger-Langevin dynamical model

Application to the bb system

Common views on quarkonia suppression

Sequential suppression by Matsui and Satz ...

Each state has a dissociation Tdiss + Early states formation in a stationnary QGP at T

= if T > Tdiss the state is dissociated for ever

=> quarkonia as QGP thermometer

... and recombination

collision energy 🖊

 \Rightarrow number of QQ in the medium \checkmark

 \Rightarrow probability that a Q re-associates with another \overline{Q} \checkmark

Reality -> back to concepts

Beware of quantum coherence during the evolution !

Need for full quantum treatment

Assumptions

Sequential suppression

 Sequential suppression at an early stage temperature

✓ Stationnary QGP

 Adiabatic evolution if formed; fast decorrelation if suppressed

VS Dynamical model

- -> State formation only at the end of the evolution
- -> Reality is closer to a cooling QGP

-> Quantum description of the correlated QQ pair

batech

** Kaczmarek & Zantow arXiv:hep-lat/0512031v1

batech

Roland Katz -7/07/2015

QGP homogeneous temperature(t) scenarios

 ➤ <u>Cooling</u> over time by Kolb and Heinz* (hydrodynamic evolution and entropy conservation)
 ➤ At LHC (√s_{NN} = 2.76 TeV) and

RHIC ($\sqrt{s_{NN}} = 200 \,\,\mathrm{GeV}$) energies

Initial QQ wavefunction

> Produced at the very beginning : $\tau_f^{Q\bar{Q}} \sim \hbar/(2m_Q c^2) < 0.1 \text{ fm/c}$

> We assume <u>either a formed state (Y(1S) or Y(2S))</u> OR a more <u>realistic Gaussian wavefunction</u> with parameter $a_{b\bar{b}} = 0.045 \text{ fm}$ (from Heisenberg principle)

ch Roland Katz –7/07/2015

Thermalisation ?

The common open quantum approach

Idea: density matrix and {quarkonia + bath} => bath integrated out arr non unitary evolution + decoherence effects

> Akamatsu* -> complex potential Borghini** -> a master equation

But defining the bath is complicated and the calculation entangled...

Thermalisation ?

Thermalisation ?

* C. Young and Shuryak E 2009 Phys. Rev. C 79: 034907 ; ** Y. Akamatsu and A. Rothkopf. Phys. Rev. D 85, 105011 (2012) ; 12 *** R. Katz and P.B. Gossaiux J.Phys.Conf.Ser. 509 (2014) 012095

Schrödinger-Langevin (SL) equation

Derived from the Heisenberg-Langevin equation*, in Bohmian mechanics** ...

Roland Katz -7/07/2015

* Kostin The J. of Chem. Phys. 57(9):3589–3590, (1972) ** Garashchuk et al. J. of Chem. Phys. 138, 054107 (2013)

Schrödinger-Langevin (SL) equation

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics ...

Roland Katz -7/07/2015

* I. R. Senitzky, Phys. Rev. 119, 670 (1960); 124}, 642 (1961).

** G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965).

Schrödinger-Langevin (SL) equation

Derived from the Heisenberg-Langevin equation, in Bohmian mechanics...

Properties of the SL equation

- > 2 parameters: A (Drag) and T (temperature)
- Unitarity (no decay of the norm as with imaginary potentials)
- Heisenberg principle satisfied at any T
- Non linear => Violation of the superposition principle (=> decoherence)
- Gradual evolution from pure to mixed states (large statistics)
- Mixed state observables:

$$\left\langle \langle \psi(t) | \hat{O} | \psi(t) \rangle \right\rangle_{\text{stat}} = \lim_{n_{\text{stat}} \to \infty} \frac{1}{n_{\text{stat}}} \sum_{r=1}^{n_{\text{stat}}} \langle \psi^{(r)}(t) | \hat{O} | \psi^{(r)}(t) \rangle$$

Easy to implement numerically (especially in Monte-Carlo generator)

Equilibration with SL equation

Leads the subsystem to thermal equilibrium (Boltzmann distributions) for at least the low lying states

See R. Katz and P. B. Gossiaux, arXiv:1504.08087 [quant-ph]

Dynamics of QQ with SL equation

> Drag coeff. for b quarks*: $A_b(T) = 0.92T + 0.64T^2$ (c/fm)

Typically T \in [0.1; 0.43] GeV => A \in [0.09; 0.51] (fm/c)⁻¹

Simplified Potential:

Stochastic forces => - feed up of higher states - leakage

> Observables: « Weight : » $W_i(t) = |\langle \Psi_i(T=0) | \Psi_{Q\bar{Q}(t)} \rangle|^2$

« Survivance : » $S_i(t) = W_i(t)/W_i(t=0)$

Roland Katz –7/07/2015

* P.B. Gossiaux and J. Aichelin 2008 Phys. Rev. C 78 014904

Background

Dynamical model

Application to bottomonia

Evolutions at constant T

Roland Katz –7/07/2015

Dynamical model Application to bottomonia

Background

Evolutions with V(T=cst) + Fstocha

t(fm/c)

21

Background

Dynamical model

Application to bottomonia

Evolutions with TLHC(t)

Density with V(TLHC(t)) and initial Y(1S)

Evolutions with V(TLHC(t)) and initial Y(1S)

Evolutions with V(TLHC(t)) and initial Y(1S)

Y(2S) strongly suppressed while Y(1S) partially survives
 Thermal forces lead to a larger suppression for Y(1S) and a smaller for Y(2S)

Evolutions with V(TLHC(t)) and initial Gaussian

 ✓ Initial weights have no big influence on large time weights

Results at hadronisation and data

	Y(1S)	Y(2S)
RAA CMS Data*	0.31±0.05	0.075±0.04
From realistic Gaussian	~0.3	~0.2
From Y(1S)	~0.25	~0.03

Feed downs from exited states and CNM to be implemented...

28

Conclusion

- Framework satisfying all the fundamental properties of quantum evolution in contact with a heat bath
- Easy to implement numerically
- First tests passed with success
- Rich suppression patterns
- Assumptions of early decoherence and adiabatic

evolution ruled out.

- ➤ Future:
 - To be included in a more realistic collision
 - Identify the limiting cases and make contact with the other models (a possible link between statistical hadronization and dynamical models)

□ 3D ?

Roland Katz – 7/07/2015 – <u>katz@subatech.in2p3.fr</u> – <u>http://rolandkatz.com/</u>²⁹

BACK UP SLIDES

Some plots of the potentials

Quantum approach

<u>Schrödinger equation for the QQ pair evolution</u>

V

Where
$$\begin{aligned} \widehat{H} &= 2m_q - \frac{(\hbar c)^2}{m_q} \nabla^2 + V(r, T_{red}) \\ \Psi_{Q\bar{Q}}(\mathbf{r}, t) &= R_{Q\bar{Q}}(r, t) \times Y_{Q\bar{Q}}(\theta, \phi) \end{aligned}$$
ial vefunction:
$$\begin{aligned} R_{Q\bar{Q}}(r, t = 0) &= \left(\frac{1}{\pi a^2}\right)^{3/4} e^{-\frac{r^2}{2a^2}} \end{aligned}$$

Initi way

where
$$a_{car{c}}=0.165~{
m fm}$$
 and $a_{bar{b}}=0.045~{
m fm}$

• Projection onto the S states: the S weights

$$W_{S}(t) = \left(4\pi \operatorname{Abs}\left[\int_{0}^{\infty} R_{Q\bar{Q}}\left(r, t, T_{red}\right) \times R_{S}(r, T_{red}^{had}) r^{2} dr\right]\right)^{2}$$
Charmonium radial S states

Radial eigenstates

of the hamiltonian

Charmonium radial S states

 I_{0}

 I_{0}

Only mean field + T(t) « Weight : » $W_i(t) = |\langle \Psi_i(T=0) | \Psi_{Q\bar{Q}(t)} \rangle|^2$ « Survivance : » $S_i(t) = W_i(t)/W_i(t=0)$

Only mean field + T(t)

<u>Results (at the end of the evolution) – data comparison to some extent:</u>

- Quite encouraging for such a simple scenario !
- Feed downs from exited states and CNM effects to be implemented
- Similarly to the data, less J/ψ suppression at RHIC than at LHC.

34

Semi-classical approach

The "Quantum" Wigner distribution of the cc pair:

$$F\left(\vec{x},\vec{p},t\right) = \int e^{\frac{i\vec{p}\vec{y}}{\hbar}} \Psi^*\left(\vec{x}+\frac{\vec{y}}{2}\right) \Psi\left(\vec{x}-\frac{\vec{y}}{2}\right) d\vec{y}$$

... is **evolved** with the "classical", 1st order in ħ, Wigner-Moyal equation + FP:

$$\left[\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \frac{\partial}{\partial \vec{x}} \right) - \frac{\partial}{\partial \vec{p}} \frac{\partial}{\partial \vec{x}} V\left(\vec{x}\right) \right] F\left(\vec{x}, \vec{p}, t\right) = \vec{\nabla_p} \left(Af + \vec{\nabla_p} (Bf) \right)$$

Finally the **projection** onto the J/ψ state is given by:

$$W_S(t) = \int F\left(\vec{r}, \vec{p}, t\right) F_S\left(\vec{r}, \vec{p}\right) \frac{d^3 \vec{p} d^3 \vec{r}}{\left(\hbar c\right)^3}$$

But in practice: <u>N test particles</u> (initially distributed with the same gaussian distribution in (r, p) as in the quantum case), that evolve with Newton's laws, and give the J/ ψ weight at t with: 1 N

$$W_S(t) = \frac{1}{N} \sum_{i=1}^{N} F_S(r_i(t), p_i(t))$$

SL: numerical test of thermalisation

Harmonic potential

Asymptotic Boltzmann distributions ? YES for any (A,B, σ) and from any initial state

V(x)

Background

Evolution with V(T=cst) and initial Gaussian

