

Measurements of D_s⁺ production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

Anastasia Barbano

for the ALICE Collaboration

INFN and Università di Torino

Strangeness in Quark Matter 2015

6-11 July 2015 Dubna (Russia)

A. Barbano

Outline of the talk

- Physical interests in:
 - ✓ heavy-flavour as probes of the Quark-Gluon Plasma (QGP)
 - ✓ D_s^+ measurements
- Analysis strategy in ALICE
- Results in:
 - pp, p-Pb and Pb-Pb collisions
- Summary and conclusions

Heavy flavours as probes of QGP

- Charm and beauty quarks produced in the early stages of the collision in high-Q² partonic scattering processes:
 - \rightarrow pQCD description
 - → time scales $\propto 1/Q <$ QGP formation time

ALICE

Heavy flavours as probes of QGP

- Charm and beauty quarks produced in the early stages of the collision in high-Q² partonic scattering processes:
 - → pQCD description → time scales $\propto 1/Q <$ QGP formation time

- Parton in-medium energy loss due to elastic and inelastic processes
 - <u>colour-charge dependent</u>: (only for energy loss via gluon radiation) stronger for gluons than for quarks (factor 9/4), BDMPS model [1]:

 $<\Delta E>\propto \alpha_s C_R \hat{q} L^2$

• **<u>quark-mass dependent</u>**: stronger for lighter than for heavier quarks [2]

[1]: R. Baier et al. Nucl.Phys. B483 (1997) 291-320 [2]: Dokshitzer, Kharzeev, PLB 519 (2001) 199 SQM 2015 4

A. Barbano

ALICE

*

Heavy flavours as probes of QGP

Charm and beauty quarks produced in the early stages of the collision in high-Q partonic scattering processes:

ALICE

*

 \rightarrow pQCD description \rightarrow time scales $\propto 1/Q <$ QGP formation time

- Parton in-medium energy loss due to elastic and inelastic processes
 - colour-charge dependent: (only for energy loss via gluon radiation) • stronger for gluons than for quarks (factor 9/4), BDMPS model [1]:

 $<\Delta E > \propto \alpha_s C_R \hat{q} L^2$

- **quark-mass dependent:** stronger for lighter than for heavier quarks [2]
- Modification of hadronization in presence of a medium? * \rightarrow fragmentation vs recombination [1]: R. Baier et al. Nucl. Phys. B483 (1997) 291-320 [2]: Dokshitzer, Kharzeev, PLB 519 (2001) 199 A. Barbano SQM 2015

Strangeness and D_s⁺ in QGP

Strange quarks are abundant in QGP:

- lower threshold for ss production w.r.t. a hadron gas
- Iifting of canonical suppression for *strangeness* production from pp (p-A) to A-A collisions

If hadronization of charm quark at low energy via recombination [1,2] + strangeness enhancement

→ enhanced D_s-meson production w.r.t. to non-strange D mesons in Pb-Pb collisions
 → interesting comparison with non-strange D mesons [1]

Physical observable:

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm AA}^{\rm D_s^+}/{\rm d}p_{\rm T}}{\langle T_{\rm AA}\rangle {\rm d}\sigma_{\rm pp}^{\rm D_s^+}/{\rm d}p_{\rm T}}$$

• $R_{AA} \neq 1$ -> binary scaling violation

[1] Kuznetsova, Rafelski, Eur.Phys.J.C51:113-133,2007
[2] He, Min et al. Phys.Rev.Lett. 110 (2013)

A. Barbano

Collision system	Js _{NN} (TeV)	L _{int} (µb ⁻¹)	Nevents
рр	7.0	4.8×10^{3}	3 × 10 ⁸
p-Pb	5.02	48.6	97.3 × 10 ⁶
0-7.5%, Pb-Pb	2.76	21.5	16.0×10^{6}
20-50%, Pb-Pb	2.76	5.9	13.5×10^{6}

 $D_{s}^{+} \rightarrow \Phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$ $c\tau = 150 \,\mu\text{m}$ $BR = (2.24 \pm 0.10)\%$ $K^{+} K^{-}$ θ_{point}

Reconstruction and selection based on:

- 1. Excellent vertex and impact parameter resolution
- 2. Particle Identification (PID)

Signal extraction requires:

- Specific selection of the decay channel → Invariant mass of the reconstructed Φ meson
- 2. Background reduction via topological selections

ALICE

Analysis strategy

 $D_{s}^{+} \rightarrow \Phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$

 $c\tau = 150 \ \mu m$ K⁺ $BR = (2.24 \pm 0.10)\%$ Opoint D^+s π^+ **Reconstruction and** selection based on:

1. Excellent vertex and impact parameter resolution

2. Particle Identification (PID)

A. Barbano

pp collisions @ $\int s = 7 \text{ TeV}$

2010 data sample

* 3×10^8 minimum bias events

Goals: 1) pQCD tests at LHC energies 2) reference for p-Pb and Pb-Pb measurements

A. Barbano

D_s^{\pm} signal in pp collisions

ALICE Invariant mass distributions of D_s^{\pm} candidates in 4 p_T intervals: [2,4], [4,6], [6,8], [8,12] GeV/c

Corrections

- Acceptance x efficiency for prompt and feed-down D_s
- Higher efficiencies for D_s⁺ from beauty feed-down than for prompt
- * Efficiencies increasing with $p_{\rm T}$

$$\frac{\mathrm{d}\sigma^{\mathrm{D}_{\mathrm{s}}^{+}}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5} = \frac{1}{2} \frac{1}{\Delta y \Delta p_{\mathrm{T}}} \frac{f_{\mathrm{prompt}} \cdot N^{\mathrm{D}_{\mathrm{s}}^{\pm} \mathrm{raw}}}{(\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}} \cdot \mathrm{BR} \cdot L_{\mathrm{int}}}$$

Corrections

$D_{s}^{+}p_{T}$ -differential cross section in pp collisions

*p*_T-differential cross section described within uncertainties by **GM-VFNS** [1] (collinear factorisation NLO) and *k*_T factorisation [2] at LO model

- D⁰, D⁺ and D^{*+} p_T-differential cross section also measured at the same energy
 - [1] Kniehl, B.A. et al. Eur.Phys.J. C72 (2012) 2082

[2] R. Maciula, M. Luszczak and A. Szczurek, arXiv:1207.6533 [hep-ph]

A. Barbano

LICE

p-Pb collisions @ $\int s_{NN} = 5.02 \text{ TeV}$

2013 data sample

• 97.3 x 10^6 minimum bias events

 $---- M_Q^{\min} = 2.4 \text{ GeV: charm}$ $---- M_Q^{\min} = 9 \text{ GeV: beauty}$

Goal: establish the role of cold nuclear matter effects

- nuclear PDFs
- *k*_T-broadening

D^{\pm}_{s} signal in p-Pb collisions

ALICE Invariant mass distributions of D_s^{\pm} candidates in 4 p_T intervals: [2,4], [4,6], [6,8], [8,12] GeV/c

SQM 2015

$D_{s}^{+}p_{T}$ -differential cross section and R_{pPb}

Similar observations for D⁰, D⁺, D^{*+}
 (see talk by C. Terrevoli)

*R*_{pPb} compatible with unity within uncertainties

 No indication for modification due to cold nuclear matter effects, crucial for the interpretation of the Pb-Pb results

A. Barbano

Pb-Pb collisions (*a*) $\int s_{NN} = 2.76 \text{ TeV}$

- 2011 data sample
- * 16.0×10^6 events in the 0-7.5% centrality class
- * 13.5×10^6 events in the 20-50% centrality class

Goals: to study heavy-quark in-medium energy loss, hadronization mechanism ...

A. Barbano

D^{\pm}_{s} signal in Pb-Pb collisions

ALICE Invariant mass distribution of D_s^{\pm} candidates in:

centrality 0-7.5 %: 3 *p*_T **intervals** [4,6], [6,8], [8,12] GeV/*c*

centrality 20-50 %: 2 *p*_T intervals [6,8], [8,12] GeV/*c*

Corrections

- ★ Efficiencies lower than in pp and in p-Pb → tighter selections needed in Pb-Pb collisions
- In the 20-50% centrality class looser selections than in 0-7.5% can be used
- f_{prompt} in Pb-Pb requires an hypothesis on R_{AA} of D_s from beauty feed-down:
 - $R_{AA}^{feed-down}/R_{AA}^{prompt} = 1$ for central values;
 - systematic uncertainty varying:
 1/3 < RAA^{feed-down}/RAA^{prompt} < 3

$\mathbf{D_s}^+ \mathbf{d}N/\mathbf{d}p_{\mathbf{T}}$

pp reference cross section:

A. Barbano

* measured cross section at $\sqrt{s} = 7$ TeV scaled to 2.76 TeV with pQCD calculations [1]

* multiplied by the nuclear overlap function $\langle T_{AA} \rangle$ [1]: arXiv:1107.3243 [hep-ph]

Systematic uncertainties

Systematic on R_{AA} in 0-7.5% as a function of the hypothesis on the beauty feed-down:

 $1/3 < R^{\text{feed-down}}AA/R^{\text{prompt}}AA < 3$

Summary of the contributions to the systematic uncertainty on data in the 0-7.5% centrality class

RAA VS pt

R_{AA} in central and semi-central events

✓ Significant suppression in 0-7.5% for $p_{\rm T}$ >8 GeV/*c* due to energy loss effects (→ $R_{\rm pPb}$ compatible with 1!)

✓**Indication of suppression** for p_T >8 GeV/*c* **also in the 20-50**% centrality class

Comparison with R_{AA} of non-strange D meson (D⁰, D⁺, D^{*+})

Higher central values for D_s in **4-6** and **6-8 GeV**/*c* w.r.t non-strange D mesons, but still compatible within uncertainties

(see talk by A. Festanti)

RAA: comparison with models

TAMU model:

- heavy-quark transport in an expanding medium
- elastic energy loss
- interactions via resonance formation
- * recombination contribution in the hadronization at low $p_{\rm T}$
 - ✓ Larger $D_s^+ R_{AA}$ w.r.t. non-strange D meson R_{AA} predicted by TAMU at low and intermediate p_T

D_s^+/D^0 and D_s^+/D^+ ratios in pp and Pb-Pb collisions

Correlated and uncorrelated sources of uncertainties treated separately

 Central ratio values higher in Pb-Pb than in pp collisions → as expected if recombination contributes to charm quark hadronization

Need smaller uncertainties to conclude

.CE

- * D_s^+ mesons reconstructed in pp, p-Pb and Pb-Pb collisions
- * pp measurements allow to test pQCD at LHC energies

- D_s^+ mesons reconstructed in pp, p-Pb and Pb-Pb collisions
- pp measurements allow to test pQCD at LHC energies

Measurements of D_s⁺ mesons in central Pb-Pb collisions suggest a strong suppression at high p_T (> 8 GeV/c)

dσ / dp_T l_{jyl<0.5} (μb GeV⁻¹c)

102

10

syst. und

 D_s^+ , pp $\sqrt{s} = 7$ TeV, L

± 3.5% lumi, ± 5.3% BR norm. unc. (not show

GM-VFNS

→ intriguing results to be improved!

- D_s^+ mesons reconstructed in pp, p-Pb and Pb-Pb collisions
- * pp measurements allow to test pQCD at LHC energies

- $(\mathbf{\hat{s}}, \mathbf{\hat{p}}) = \mathbf{\hat{s}}_{s}, \mathbf{\hat{p}} = \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s} = \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s} = \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s}, \mathbf{\hat{s}}_{s} = \mathbf{\hat{s}}_{s}, \mathbf$
- ★ Measurements of D_s⁺ mesons in central Pb-Pb collisions suggest a strong suppression at high p_T (> 8 GeV/c)
 → intriguing results to be improved!

 The larger data sample that will be collected during Run 2 will allow to substantially reduce the uncertainty

SQM 2015

- D_s^+ mesons reconstructed in pp, p-Pb and Pb-Pb collisions
- pp measurements allow to test pQCD at LHC energies

- ALICE $D_s^+, pp \sqrt{s} = 7 \text{ TeV}, L_{int} = 4.8 \text{ mb}^{-1}$ 10^2 10^2
- Measurements of D_s⁺ mesons in central Pb-Pb collisions suggest a strong suppression at high p_T (> 8 GeV/c)
 → intriguing results to be improved!

- The larger data sample that will be collected during Run 2 will allow to substantially reduce the uncertainty
- Precision measurements with Run 3 after detector upgrade, particularly at low p_T

Backup

Corrections in p-Pb

B feed-down subtraction

- f_{prompt} depends on hypothesis on $R^{feed-down}AA/R^{prompt}AA$
- R_{AA} (B) > R_{AA} (D)
 R_{AA}(D+_s) > R_{AA}(D) at intermediate-low pt
 R_{AA}(B⁰_s) > R_{AA}(B) if b recombines

 -> R_{AA}(B⁰_s) > R_{AA}(D+_s) ?

Energy-loss hypothesis

S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Nucl. Phys. A783 (2007) 493. N. Armesto, A. Dainese, C. A. Salgado and U. A. Wiedemann, Phys. Rev. D71 (2005) 054027.

A. Barbano