

Recent Results on Two-Particle Angular Correlations in ALICE

Alice Ohlson (CERN) for the ALICE Collaboration

9 July 2015

Two-particle correlations (2PC)

• Measurements of correlations in $(\Delta \varphi, \Delta \eta)$

Two-particle correlations in ALICE A. Ohlson (CERN)

Ridges in high multiplicity collisions

- The nearside ridge was observed in high multiplicity pp and p-Pb collisions
 - \rightarrow reminiscent of structures seen in Pb-Pb collisions where it is attributed to flow

JHEP 1009:091 (2010) CMS N \ge 110, 1.0GeV/c<p₇<3.0GeV/c

• Subtract jet components to reveal "double ridge"

v_2 in p-Pb

- Extract v_2 {2PC,sub} by fitting subtracted distributions with Fourier series (ALICE)
- Or obtain v_2 from harmonic decomposition with η gap ($|\Delta \eta| > 2$) (CMS)

• Similar mass ordering is observed for v_2 in p-Pb and for v_2 in Pb-Pb

Collectivity in p-Pb?

- Non-zero v_2 {4}, v_2 {6}, v_2 {8}, v_2 {LYZ}
- Non-zero Fourier coefficients measured up to n = 5
- Ridges observed at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Ridges observed in ³He+Au

- hydrodynamics
- gluon saturation (CGC)
- extended color connections forming along the longitudinal direction
- final state parton-parton interactions

Study η dependence of the (double) ridge

to gain insight into the origins of long-range structures in p-Pb collisions

→ muon-hadron correlations in ALICE (arXiv:1506.08032)

μ-track(let) correlations

- Trigger particles measured in the Forward Muon Spectrometer (FMS): -4 < η < -2.5
 - Composition of parent particles of reconstructed muons varies as a function of $p_{\rm T}$
- Associated particles reconstructed in the central barrel: $|\eta| < 1$
 - ITS+TPC tracks: $0.5 < p_T < 4 \text{ GeV/}c$
 - SPD tracklet: mean $p_{\rm T} \approx 0.75$ GeV/c ($p_{\rm T}$ is correlated with differences of azimuthal and polar angles of hits in the SPD layers)

arXiv:1506.08032

9 July 2015

D

p-Pb data in ALICE

- $\sqrt{s_{NN}} = 5.02 \text{ TeV} (4 \text{ TeV p and } 1.58 \text{ ATeV Pb})$
 - Center-of-mass rapidity is shifted 0.465 units in the p direction
 - Two beam configurations
 p-Pb

- Multiplicity classes measured in the V0:
 - using two rings from each detector to achieve symmetric η coverage $(2.8 < \eta_{lab} < 3.9 \text{ and } -3.7 < \eta_{lab} < -2.7)$

 \rightarrow same $|\eta_{cms}|$ coverage in p-Pb and Pb-p configurations

- In p-Pb, both muon-track and muon-tracklet correlations are studied
- In Pb-p, only muon-tracklet correlations are studied due to lack of statistics
 - the majority of the data was triggered, and the TPC was not read out

Associated Yield per Trigger Muon

arXiv:1506.08032

Structure observed around $\Delta \varphi = 0$ at large $\Delta \eta$ – nearside ridge in high-multiplicity events

Two-particle correlations in ALICE A. Ohlson (CERN)

Long-range correlations

arXiv:1506.08032

- Subtract low-multiplicity correlations from high-multiplicity correlations to remove jet components and isolate long-range structures
- Project onto $\Delta \varphi$ and fit to extract Fourier coefficients a_n

Two-particle correlations in ALICE A. Ohlson (CERN)

Muon v_2 {2PC,sub}

- $V_{2\Delta}$ measured by scaling a_n to the appropriate baseline $V_{2\Delta}$ {2PC,sub} = $a_2/(a_0+b)$ where *b* is the baseline in the low-multiplicity event class
- $V_{2\Delta} = v_2^{\text{trig}} v_2^{\text{assoc}}$ if factorization is valid

	Assoc. tracks	Assoc. tracklets		
Systematic effect	p–Pb	p–Pb	Pb–p	Ratio
Acceptance (z_{vtx} dependence)	3-4%	0-5%	0-3%	0-1%
Remaining jet after subtraction	4 - 10%	5-14%	1-2%	3-15%
Remaining ridge in low-multiplicity class	1 - 4%	1-6%	0-2%	2 - 8%
Calculation of v_2	0-1%	0-1%	1%	0-2%
Resolution correction	1%	0-1%	0-1%	0-2%
Sum (added in quadrature)	7-11%	6-14%	2-4%	5-17%

Results: Tracklet vs. track comparison

arXiv:1506.08032

- Agreement between track and tracklet results demonstrate that factorization of trigger and associate v_2 is valid
 - measured trigger muon v_2 is the same even though associated track and tracklet p_T distributions are different

Results: v_2^{μ} {2pc,sub}

arXiv:1506.08032

v_2^{μ} {2PC,sub} in the p-going and Pb-going directions

- Data compared to calculations from AMPT with Pythia decayer
 - qualitatively similar trends at low $p_{\rm T}$
 - quantitatively different $p_{\rm T}$ and η dependence between data and model, especially at high $p_{\rm T}$
- High $p_{\rm T}$ (> 2 GeV/c) muon production dominated by heavy flavor decays
 - Possible scenarios at $p_{\rm T} > 2 \text{ GeV}/c$:
 - HF muons have $v_2 \neq 0$
 - different composition of the parent distribution and their v_2

Results: Ratio in p- and Pb-going directions

arXiv:1506.08032

Ratio of v_2^{μ} {2PC,sub} in the Pb-going and p-going directions

- Ratio is independent of $p_{\rm T}$ within statistical and systematic uncertainties
- Constant fit to the ratio: 1.16 ± 0.06 with $\chi^2/\text{NDF} = 0.5$
- Ratios of observed quantities in the Pb-going and p-going directions should be sensitive to the initial state conditions

PLB 728 (2014) 662

Model Comparisons

- Measured v_2^{μ} {2PC,sub} is for decay muons measured in FMS •
 - in order to account for the effects of the absorber, future model calculations should use the efficiencies provided

K→u/HF→u

ALICE, GEANT3

Published model predictions cannot yet be directly compared to data ۲

Two-particle correlations in ALICE A. Ohlson (CERN)

arXiv:1506.08032

-4.0 < η < -3.5</p>

Conclusions

- ALICE
- v_2 {2PC,sub} has been measured for muons in p-Pb collisions in both the p-going and Pb-going directions
 - v_2^{μ} {2PC,sub} has similar p_T dependence in both directions
 - v_2^{μ} {2PC,sub} in the Pb-going direction is (16 ± 6)% higher than in the p-going direction
- Results are compared to AMPT model calculations
 - $p_{\rm T}$ dependence is similar, particularly at low $p_{\rm T}$
- Future measurements and model comparisons will allow us to gain understanding of the production mechanisms of long-range correlations in small systems

backup

ALICE Detector

$dN_{ch}/d\eta$ for V0S event classes

Event	$\left<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta ight> _{ \eta <0.5}$
class	$p_{\mathrm{T}} > 0 \mathrm{GeV}/c$
0–20%	35.8 ± 0.8
20–40%	23.2 ± 0.5
40–60%	15.8 ± 0.4
60–100%	6.8 ± 0.2