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Main Points

e Duality symmetries more important than space-time
symmetries (general covariance, supersymmetrys,...)

e Fy: a symmetry based proposal for (de-)emergence
of space (and time) near cosmological singularity.

e Fermions transform under ‘R symmetry’ K(FE).

e Distinction between space-time bosons and fermions
meaningless in ‘pre-geometric’ regime ?

e Understanding K(FEj)): perhaps the key challenge?

e Exploiting the identity 3 x 16 = 56 — 8, or:
Is there a role to play for K(Fyy) in ‘real’ physics?



Exceptionality and Maximal Supergravity

e Maximal theories: £, for D =11 —n tcremer, ju1iat1979)]
e F,(Z) conjectured to be a symmetry of non-perturbative

String theory — M theory. [Hull,Townsend; Green et al.]

Below D = 3 symmetries become nfinite-dimensional:

® Fyo) = Eé” : a solution generating symmetry act-
ing on M = FEyg)/K(Fy) = moduli space of colliding
plane wave solutions of maximal D = 2 supergravity.
e ... suggests Fjy) for D = 1: no space, only time?

e Expect coset structure E,,/K(E,) to persist also
for infinite-dimensional case (n > 9).



BKL and Spacelike Singularities

T=T Planck
T=0 Regime

For T' — 0 spatial points decouple and the system is
effectively described by a continuous superposition of
one-dimensional systems — effective dimensional re-
duction to D = 1! [Belinski,Khalatnikov,Lifshitz (1972)]



Habitat of Quantum Gravity?

e Cosmological evolution as one-dimensional motion
in the moduli space of 3-geometries (meeier,pevitt, . ..

 {spatial metrics g;;(x)}

— cB) —
M=G {spatial diffeomorphisms}

e Formal canonical quantization - WDW equation.

e Unification of space-time, matter and gravitation:
M should incorporate matter degrees of freedom in
a natural manner (not simply M = G® x M0,

e Can we understand and ‘simplify’ M by means of
embedding into a group theoretical coset G/K(G)?

e Main conjecture: G = Ejy and K(G) = K(FEy)



What is ElO?

The nice thing about it is that no one knows .... [Murat Giinaydin, unpublished]

F1 is the ‘group’ associated with the Kac-Moody Lie
algebra g = ¢;y defined via the Dynkin diagram (e xac

IO
o—o o o o o o—o
1 2 3 4 5 6 7 8 9

Defined by generators {e¢;, f;, h;} and relations via Car-
tan matrix A;; (‘Chevalley-Serre presentation’)

[hi, hy] =0, lei, fi] = 0ijhi,
hiye5] = Aijej, [hi, f3] = —Aii £
(ade;)!™ie; = 0 (ad fi)' i f; = 0.
¢1p is the free Lie algebra generated by {¢;, f;, h;} modulo

these relations — infinite dimensional as A;; is tndefi-
nite — Lie algebra of exponential growth !




SL(10) level decomposition of Ej

e Decomposition w.r.t. SL(10) subgroup in terms of
SL(10) tensors — level expansion

9
Oé:gOé() I ij()éj = ElOZ@EE?
j=1 (el

e Up to ¢/ < 3 basic fields of D = 11 SUGRA together
with their magnetic duals (spatial components)

¢ =0 Gon Graviton
(=1 A — 3-form

¢ = 2 A ——— dual 6-form
¢ = 3 U dual graviton

e Analysis up to level / < 28 yields 4 400 752 653 repre-
sentations (Young tableaux) of SL(10) trischbacher,n:0301017]

e Lie algebra structure (structure constants, etc.) un-
derstood only up to ¢ < 4. Also: no matter where
you stop it will get even more complicated beyond!



The Em/K(ElQ) o-model

Basic Idea: map evolution according to D = 11 SUGRA
equations of motion onto null geodesic motion of a
point particle on Ejy/K(E;)) coset manifold 0207267

1 1
V(t) = exp (habu)Sa” + iAo () B + 5 Aapoue (B - )

and then work out Cartan form 0,VV~! = Q + P with
associated oc-model — FEjy/K(F;;) o-model dynamics
up to / < 3 matches with supergravity equations of
motion when truncated to first order spatial gradients.

Conjecture: information about spatial dependence gets

‘spread’ all over F, Lie algebra. More specifically:

Infinite tower of o-model fields <+ SUGRA fields and
their non-local descendants (duals) at fized spatial point?

Hint: level expansion contains complete set of gradient
representations for all D = 11 fields and their duals.



Some practical concerns

[Cf.: Kleinschmidt,HN,Chidambaram:1411.5893]
Use Cartan-Weyl basis, with [H,, H,| =0 (CSA)

(Y, B, ifat fEA,
[Ho, El) = 0.E., , [ELE) =< ¢&%*H, ifa=-4,

\ 0 otherwise

(Triangular) parametrization of Kac-l\/[oody group via

mult (o
V(@) AL(b) =" expla*(t)Ha) exp (Z S an )

a>0 r=1

does not work for imaginary roots «, because I’ are
not locally nilpotent = exponentiate only real roots ?

— blurs association of physical degrees of freedom with
Lie algebra elements associated to imaginary roots!



Nevertheless, we can write (in triangular gauge)

mult (o

OVVl(t) = () Ha + Y Z Pt

a>0 r=1

with nice canonical brackets

{r*, 7} =0, {7, P}=aP,, {P,, Pj}= th

— still to be checked (modified?) for imaginary roots.

= ‘good’ canonical variables to couple to fermions!

Suspicion: consistent incorporation of fermions is one
crucial missing piece of the puzzle ...

. and possibly requires novel kind of bosonization.

[cf. Witten (1984), Goddard,Nahm,0live (1985)]



Fermions and K (F)

... probably a key issue for further progress...

Important point: maximal supersymmetric theories
not based on (hypothetical) superextensions of F,:

® There is no proper superextension of FE, for any n.

e For D > 3 supergravity fermions transform in
mazximal compact subgroup K(E,) C E,,, e.g.

K(E7) = SU(8) fermions € 8 and 56
K(FEg) = Spin(16)/7, fermions € 16, and 128.
e The associated (double-valued) fermion representa-
tions are not ‘liftable’ to F, representations

e Expect all of this to remain true for £y, F, ...



What is K(FEq))?

The nice thing about it is that no one knows .... [HN, unpublished]

For F;), the ‘maximal compact’ subalgebra is defined
as the fixed point algebra of the Chevalley involution

wiej) =—=f;, wfy) =—e, wlhy)=—h

together with invariance property [w(z),w(y)| = w(|z,y])
= El() — K(Em) &) K(El())J' ; W= (,U([U) for = € K(Em)

This definition is analogous to the corresponding one for the
finite-dimensional case, e.g. 7 = w(z) € so(n) C sl(n) for w(z) = —aT,

with corresponding decomposition sl(n) = so(n) ® so(n)*
Consequently, K(FEj) is generated by
X; = el-—fl-:w(xi) Z,], — 1,,10



with Berman-Serre relations
[:1:2-, :cj] =0 if 1 and j are non-adjacent

i, [xi, 2] + 25 = 0 if 1 and j are adjacent

Theorem: each set of {x;} satisfying the above rela-
tions provides a realization of K(FEj)). s.pernan(1989)]

Involutory subalgebra K(F,) C Ey is spanned by {J}

Jo=FE —FE _, a€lA(Eyp), r=1,..multa)

But: K(Fy) is co-dimensional and a very strange beast!

e K(FEyy) has finite-dimensional (unfaithful) representations
e = K(F)) is not simple (= has non-trivial ideals)

e No faithful (infinite-dimensional) representations are known !

[ Idem for K(Eg)! [Julia,HN(1996); Samtleben,HN(2004)] ]



Unfaithful representations

<> existence of non-trivial ideals iy in K(FE)!

More precisely: for unfaithful representation V the
associated ideal is

iV L= {I‘ c K(Em) ’I“U =0 Vv € V} C K(Em)
For known examples, iy has finite co-dimension in K(FE))
= i = K(E)y) Siy is not a subalgebra of K(Fy)!

... but rather a distribution space [Kieinschmidt,Palmkvist,HN:JHEP(2007)051]

Analysis of fermionic sector of D=11 SUGRA =

Spin-% (‘Dirac representation, VD): [deBuyl,Henneaux,Paulot (2005)]

1 1
T X = 5Taxs  Tx = Tax
Spin-2 (‘Rarita-Schwinger representation’ Vig) wx,asse 2006

1 1 a @ a @
T = Tapo + 28097, JGH60 = ST + 05T = T oy,



In both examples multiple commutators generate full
K(E,) algebra:

(1 (1) (2) 2 5 0) f
[J Jdef} - Jabcdef + 5[[ab | e

abc ?
Quotient algebras:

K(El())/iVD = 50(32) CX K(Em)
K(Elo)/iVRS = 50(288,32) (X K(Elo)

Rarita-Schwinger equation can be reformulated as a
(kind of) ‘K (Fjy) covariant Dirac equation’. mu: osos0s]

Subalgebras of K<E10> [cf. Kleinschmidt,HN:1602.04116]
(a) s0(10) SUGRA in D =11

(b) s0(2) @ s0(16) SUGRA in D =3

() s0(9) @ s0(2) IIB SUGRA in D =10

(d) s0(9) @ s0(9) mlIIA SUGRA in D =10



Decomposing the spin-% representation

) m)eon)
() (md)en

%5 (9,16)® (16,9) @ (1,16) @ (16,1)

In particular: decompositions of K(FE;;) w.r.t. so(10),
s0(9) @ s0(2) and s0(9) ® s0(9) yield correct fermion as-
signments for D = 11, mIIA and IIB supergravity.

= K(F1o) unifies known R symmetries. wu: nep-tn/0603205]



[-matrices for K(FEq)

Wall basis for roots a = > p.e*, f =) g.c* with simple roots
a; = (1 —100000000), - - -, ag = (000000001 —1), ap = (0000000111)

and o - =G*p.q, = «;-a; = A;; (= Cartan matrix of Ey).

For any FEj; root o (or any element of Fjj root lattice) we define
[(a) := (D)PL- - ([yp)P10
Then F(&)F(ﬁ) = &a,p F(OC + 5) with Cocycle Ea,fB = (—I)Za<anpb =

N [P, T(B)] = 0

res = { (D), T(B)} = 2eqsl(a P
[[(@). [(8)] = 260l )

a-feEW+]1 = { {T(a).T()} = 0

Then z; — %F(ozi) provides a realization of Serre-like relations!

Multiple commutation shows that %F(a) provides realisation for
all real roots of Fj (of which there are infinitely many)!



Higher spin realizations of K(FEj)

— For s > % these go beyond supergravity!

But first need to re-write spin—% by means of crucial
redefinition (manour,Hil1mann:0906.3116]

32
= ZF%BgD% (no sum on a!)
B=1

Re-definition breaks manifest Lorentz symmetry, but:

1
{Wxa bi}DiraC — 5ab5AB — §(Farb)AB = {qbi, ¢%} = Gab(SAB

= manifest SO(1,9) = invariance group of mini-superspace
WDW Hamiltonian with DeWitt metric G, instead!

From analysis of known K(Fj)) transformation acting
in RS representation we extract a second quantised

realisation of J(«) for all real roots oo € A(Fyy):



A 1 1
J(a) = (—§aaab + ZGab) T (o) " V roots obeying o’ = 2

[NB: formula also valid for K (AF3) [anour,spindel,1406.1309] ]

There exists a new realization with ‘spin—%’ fermionic
operators [kieinschmidt,HN. :1307.0413]

{67, 65} =G"GPous (o7 = o})

— a fermionic Fock space F of dimension 2°°"!

Then, Serre-like relations are satisfied on F with
j(O‘) = X(O‘)ab cd Qbabr(&)qbw

and . 1
X()apeq = 5 (aln0ict = 0 (aG)(cQa) + ZGa(ch)b

again for all real roots «!

= novel realisation of K(F;) beyond supergravity!



‘ Spm-z ’

Construction also works for spim-Z fermions:

{qsabc deefB} — 5 d(Sle) f)(SAB

Then ‘Serre-like’ relations are again obeyed with

JA(CO — X(@>abc def ¢abCF(a>¢def

and
def 1 d e £, O def)3 (dee )
Xapc " () = —gaaaba atafar + 204( ab5 aaa’’) — Ea(ach 5c)04
1 (ace f) 1 (de f)
+70050¢) + 75 (2 = V3)aaGre G!

1
E( — 1+ \/§) (ozaozboch (dery) 4 Q(a Gbc>oz oo )

Fermionic Fock space has dimension dim(F) = 2%,

As before, J(a) provides a realisation for all real roots.



e ‘Higher spin’ not in ordinary space-time, but in
(some variant of) Wheeler-DeWitt superspace!

® Restriction to Eg C £y must yield representations of

K(FEs) = Spin(16)/Z; — for new realisations we find

560, for s = g and 1920, for s = % — implies strong

restrictions beyond: e.g. no solution for s = %, 171, 173!

e Another strange feature: decomposition under
SO(10) C K(Eyp): 1760 — 1120 ©2 x 288 G2 x 32.

B _y ¢ and " (= RS field strength?)

e Suggests nested structure of higher spin realizations
that penetrate farther and farther into K(FEy)...

... but systematics (if any) is not known.

e Affine case — novel representations for K(Ey).



SUSY Constraint and K(Fq)

SUSY Constraint from canonical analysis:

- 1 1
S = rab [8a¢b + Zwacdr6d¢b + wabc¢c + §wa00rcr0¢bi|

1 1
_Fa CFOFab c _Fa . Fabcde )
+ 7 Foa Yt g Fabedl ™Y

Rewrite in terms of Fj, coset variables (up to ¢ = 3)

(0) a O o 1 M N [
§ = (P9 — POT,) 08+ ~POTbee + ST
1 (6 1 @3
+ = (P Py — —pl - pasege
6! alacy-+cy 28 aler--cg

Rewrite as a partial sum over (real and null) Fy; roots:
Sa = Wagbil + Z Py (F<a)¢(a)),4 + Z Pg (F<5)¢<ET))A (+ T ???)
s =
with ¢(v)4 = v,05 — can we extend sum to imaginary roots?

— need higher-spin realisations to soak up polarisations?



SUSY constraint algebra
Canonical constraint superalgebra [pamour,kleinschmidt,HN, €QG24(2007)046]

{SA7 SB}:(SABH + Z£5F<5)AB 4o
0

Supergravity Hamiltonian H and £;; Casimir H agree up to ¢ = 2,
but start to differ for / >3 — more K(FE)j) invariants 777

The other (bosonic) canonical supergravity constraints £; are all
associated with null roots of Ejj: [Damour,Kleinschmidt,HN, CMP302(2011)755]

e Diffeomorphisms: § =[0123456423] = affine null root (¢ = 3).
e Gauss Constraint: ¢’ =[1234567424] (¢ =4)

e ‘Dual Gauss Constraint’ (Bianchi): 6" = [1234579635] (¢ =5)
e ‘Dual diffeomorphisms’ (Bianchi): " =[12357911736] (£ =6)

Recall affine Sugawara £,,; < > :J* J¢: and § = affine null root

— is there a hyperbolic analog of the Sugawara construction?



N = 8 Supergravity: a strange coincidence?

SO(8) — SU(3)xU(1) breaking and ‘family-color locking’

(u,C,t)L: 3C><i_’>f—>8@1, ng_q

(@, ¢, t) 3.x3; >8a1, :_§+q

(d)sab)L: 3C><3f_>6@37 :_%_‘_q
(e w7 )L 1.x3; — 3, O=—1+gq
(e, ut, 7)) 1. x3f— 3, Q=1—gq
(Veayual/T)L: ].CX?)JC—).‘?)’ = —q
(D€7p,uaﬂ7‘)L: ].C><3f—>3’ Q:q

Supergravity and Standard Model assignments agree
if spurion charge is chosen as ¢ = % [Gell-Mann (1983)]

Realized at SU(3)xU (1) stationary point! twarmer,m, wpeaso(i9ss)a12]



Fixing the spurion charge
[Meissner,HN: Phys.Rev.D91(2015)065029; Kleinschmidt,HN: 1504.01586]
But need to go beyond N =8 supergravity!

Spurion charge shift can be realised via U(1),

1
Z:§(T/\1/\1+1/\T/\1+1/\1/\T+T/\T/\T)
acting on 56 fermions Y”* in 8 A 8 A 8 of SU(8), with
T =¢® 14 (imaginary unit in SU(3) x U(1) breaking).

7 is not in SU(8) = K(E7) ... but it is in K(FE)!
The proof requires over-extended root of £y = no way
to realise ¢-shift with finite-dimensional R symmetries!

It would be rather striking if K(F;)) were needed to re-
late N = 8 supergravity to Standard Model fermions...

Also: K(Elo) D) W(El()) D, W<E7) D) PSL2<7)
— a new fa.mily Symmetry‘? [cf.: Chen,Perez,Ramond,1412.6107]



Summary and Outlook

e All results obtained so far indicate that £y requires
a setting beyond known concepts of space and time.

e In this case space-time, and with it, concepts such
as general covariance and local supersymmetry would
have to be emergent.

e Fermionic sector: covariance in space-time replaced
by covariance in generalized WDW moduli space.

e Need to resolve dichotomy between finitely many
fermionic and infinitely many bosonic degrees of
freedom — may require some kind of bosonization?

e SUGRA Hamiltonian vs. quadratic Casimir of Fjg:
a definite mismatch between F£;; and maximal su-
persymmetry?



Summary and Outlook

e Apparent incompatibility of K(F;;) and supersym-
metry for imaginary (null and timelike) roots — a
new way to break, or rather avoid, supersymmetry
with even more symmetry?

e = Can FE;; supersede SUSY as a unifying principle?
e Despite the existence of (at least) 10*"*""! string vacua

[most recent figures from: Taylor,Wang:1511.03209; Schellekens:1601.02462]

N = 8 Supergravity remains the only theory that
(after complete breaking of supersymmetry) gives
48 spin-% fermions, and nothing more.



