Commissioning of the ACCULINNA-2

fragment separator and its first day experiments

Andrey Fomichev^a for ACCULINNA Collaboration

- a Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
- b Institute of Physics, Silesian University in Opava, Czech Republic
- c Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
- d GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany
- e National Research Center "Kurchatov Institute", Moscow, Russia
- f Institute of Nuclear Physics PAN, Krakow, Poland
- g Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Russia
- h Faculty of Physics, University of Warsaw, Warsaw, Poland
- i Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden
- j All-Russian Research Institute of Experimental Physics, Sarov, Russia
- k Ioffe Physical Technical Institute, St. Petersburg, Russia
- 1- NSCL, Michigan State University, East Lansing, Michigan, USA

Dubna PAC meeting, June 14-15, 2017

Setup layout & Today status

total length F0-F5 ~53m 39 magnetic elements

ACCULINNA 🧐 4 m ACCULINNA-2 HI beam from U-400M 6 m

1.

Setup layout in F3-F5

F5: Dipole magnet – installed, detector system & electronics in a progress; new reaction chamber is recently delivered; **F3:** RF-kicker – contracted in 2016, will be ready in the middle 2018

Frequency range (MHz)	15 – 22
Peak voltage (KV)	120
Gap (mm)	70
Width of electrode (mm)	120 min
Length of electrodes (mm)	700
Cylinder diameter (mm)	1200 max
Stem diameter (mm)	120 max
Length of coaxial line (mm)	1830

Goals of the test
in March 2017:- ¹⁵N profile at F3 depending on F1 diaph. (Ø 25, 12, 7 mm)
- main parameters (I, P, X_Y) of some RIBs at F3, F4, F5

 $(X_1 Y_1 = 2_8 \text{ mm}, \epsilon = 35 \text{ mrad}, \Delta p/p = 2.5\%, W = 1 \text{ mm})$

Beam profile of ¹⁵N at F3 with Ø7 mm diaphragm at F1

$\label{eq:I2} {}^{12}Be \ from \ {}^{15}N(49.7 \ AMeV) + Be(2 \ mm): \\ I = 190 \ 1/s \ @ \ 1 \ pnA; \ \Delta p/p = 4\%; \ P \sim 92\%; \ E = 39.4 \ AMeV; \ X_5 _ Y_5 = 22_25 \ mm \\ Good \ agreement \ with \ calculation \ \& \ Factor \sim 25 \ (I_Acc2 / I_Acc1) \\ \end{array}$

⁶He from ¹⁵N(49.7 AMeV) + Be(2 mm): I = 2700 1/s @ 1 pnA; Δp/p = 2%; E = 31.5 AMeV; $X_5 Y_5 = 20_{20}$ mm; P ~ 53% @ F3: ±11 mm

It good agrees with estimations

RIBs production rates in {}^{15}N(49.7 \text{ AMeV}) + Be(2 \text{ mm}) reaction F1: I({}^{15}N) = 1 pnA @ 7 mm; F2: \Delta p/p = 2\%, Wedge_Be = 1 mm

RIB	Energy, MeV/nucl.	Intensity, 1/s	
¹⁴ B	37,7	120	
¹² Be	39,4	150	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
¹¹ Li	37,0	4	ient. 17
⁹ Li	33,1	1100	erin v 20.
⁸ He	35,8	25	Exp ir
⁶ He	31,5	2700	

Main parameters (I, P, X_Y) are agree well with estimations First experiments with RIBs could be started in 2017 (I < 0.1 pµA) Experiments with intense primary beam (~ 1 pµA) will be able since 2018

 ${}^{12}\text{Be} + d \rightarrow {}^{6}\text{Li} + {}^{8}\text{He} \text{ (alpha transfer cross section)}$ ${}^{6}\text{He} + d \rightarrow {}^{3}\text{He} + {}^{5}\text{H} \text{ (proton transfer cross section)}$ 2017

Moving ahead to ⁷H via ¹¹Li or ⁸He 2018 - flagship exp.

⁷H puzzle: each time only limits of σ were observed

Caamaño et al. PRL 99(2007) ${}^{12}C({}^{8}He, {}^{13}N){}^{7}H ==> E = 0.57 {}^{+0.42}_{-0.21}$ MeV, $\Gamma = 0.09 {}^{+0.94}_{-0.06}$ MeV

Drastically improvement of sensitivity in d(⁸He,³He)⁷H or p(⁸He,pp)⁷H
³ ³ ¹¹Li as a projectile and alpha transfer reaction d(¹¹Li,⁶Li)⁷H

Hunt for ⁷H and search for the *4n* radioactivity in the *d*(¹¹Li,⁶Li)⁷H reaction

* $I(^{11}Li @ 30 AMeV) \sim 2x10^4 \text{ pps} \Longrightarrow \sim 100^7 \text{H events/day (missing mass)}$

- ** Decay energy will be measured with around 100 keV resolution,
 - ~ 3 events/day (⁶Li-t-n coincidences)

Plan on 2017: d(¹²Be,⁶Li)⁸He as a tool for the main run d(¹¹Li,⁶Li)⁷H
* alpha transfer cross section at 25 and 35 AMeV;
** useful kinematics to detect two stable particles via annular telescope;
*** could be done at I(¹⁵N) ~ 100 pnA ==> I(¹²Be) ~ 2*10⁴ pps; *BT* ~ 2 weeks

Plan on 2017: $d({}^{6}\text{He},{}^{3}\text{He}){}^{5}\text{H}$ as a tool for the main run $d({}^{8}\text{He},{}^{3}\text{He}){}^{7}\text{H}$ * cross section values for the 1p and 1n transfer reactions in a wide θ_{CM} ** improvement in missing mass measurements via novel telescopes

⁵*H* (left) and ⁵*He* (right) energy spectra depending on ³*He-t* coincidences

Beta-delayed proton emission from ²⁷S and ²⁶P via Optical Time Projection Chamber /*Janiak et al.*, PRC 95 (2017) 034315/

 $P_{\beta 3p} < 0.08\%$

Thomas et al., EPJ A21 (2004) 419

²³Si: β delayed ³He radioactivity search via OTPC

"...²³Si has an open channel for the beta delayed ³He emission - *never seen before*. Moreover, this channel should be relatively easy to see, because the beta-alpha decay leads to the unbound ¹⁹Na. Thus, the ³He channel is the only one in which a single particle with Z=2 is emitted. The ³He emission is a sort of a mirror of tritium emission - this may contain some physics. This point was born in discussion with Karsten Riisager and Hans Fynbo in Aarhus. It would be great if we could make the ²³Si experiment at Dubna."

Proposal by M. Pfützner et al.

Summary and outlook

ACCULINNA-2 fragment separator is commissioned in 2017, the design parameters of this facility were experimentally confirmed.

The intensities obtained in the fragmentation reaction ¹⁵N (49.7 AMeV) + Be (2 mm) for the RIBs of ¹⁴B, ¹²Be, ^{9,11}Li, ^{6,8}He were on average 25 times higher in comparison with the values for old facility.

The first-priority experimental program with RIBs is focused on ⁷H and ²³Si nuclides and their possible exotic decays. It will be started this year.

Thanks for your attention

Acc	ulinna-2 since 2017/18		Request / Cost				
Product name			Г _{тіп} 1 00М	Beam, E, I	Method, equip	ment	
²⁷ S : P ²³ Si : F ²⁶ S : 0	P(β3p) – value/limit P(β³He) – yes/no/limit bservation, states	C W	Dne veek	³² S, 52 AMeV, 0.2 – 0.5 pμA	OTPC, chopper & RF-kicker p(²⁸ S,t) ²⁶ S missing mass & RF-kicker		
¹⁷ Ne : 2p decay for 3/2 ⁻ state			vo or 1ore eeks	²⁰ Ne, 54 AMeV, 1.0 pμA ¹⁵ N, 49 AMeV, 1.0 pμA	P(¹⁸ Ne,d) ¹⁷ Ne* eV, LA P(¹⁸ Ne,d) ¹⁷ Ne* combined mass, zero angle spec. d(⁸ He, ³ He) ⁷ H d(¹¹ Li, ⁶ Li) ⁷ H p(¹¹ Li,d) ¹⁰ Li combined mass		
¹⁰ He : ¹³ Li : ¹⁶ Be :	E, Γ, J ^π of excited states, search for exotic decays 2n, 4n	Thi n we	ree or 10re eeks	 ¹¹B³⁺, 34 AMeV, 4.0 pμA ²²Ne⁷⁺, 44 AMeV, 1.0 pμA 	t(⁸ He,p) ¹⁰ He t(¹¹ Li,p) ¹³ Li t(¹⁴ Be,p) ¹⁶ Be	tritium target, neutron array	

ACC-2 @ U400M advantages: Room T operating Relatively low cost beam time Runs during 2,3 and even more weeks are possible

Cryogenic targets ³He, ⁴He and all hydrogen isotopes

ToF length ~15 m

	20	40	60	0					
Установка	ACC	ACC-2	COMBAS	LISE	A1900	RIPS	BigRIPS	FRS	SFRS
Институт	FLNR, JINR			GANIL	MSU	RIKEN		GSI	
$\Delta\Omega$, msr	0.9	5.8	6.4	1.0	8.0	5.0	8.0	0.32	5.0
δ _Ρ ,%	2.5	6.0	20	5.0	5.5	6.0	6.0	2.0	5.0
p/∆p , a.u.	1000	2000	4360	2200	2915	1500	3300	8600	3050
Bρ _{max} , Tm	3.2	3.9	4.5	4.3	6.0	5.76	9.0	18	18
Length, m	21	38	14.5	42	35	21	77	74	140
E _{min} , AMe∨	10	5	20	40	110	50		220	
E _{max} , AMe∨	40	50	80	80	160	90	350	1000	1500

ERICA - Electron-Radioactive Ion Collider @ ACCULINNA-2

¹²Be transfers profile at F5 (by S.V. Stepantsov)

²⁶S: search via missing mass measurement

<u>NNDC:</u> $T_{1/2} \sim 10 \text{ ms}$ Acculinna-1: $ToF_{F1-F4} \sim 0.0003 \text{ ms}$ <u>Experiment (implantation method):</u> $T_{1/2} < 79 \text{ ns}, Q_{2p} > 640 \text{ keV}$ Fomichev et al., IJMP E20 (2011) 1491 <u>Acculinna-2 with RF-kicker</u> missing mass in p(²⁸S,t)²⁶S: I(²⁸S)~10³ pps, P~12%, E~38 MeV/A, 1 mm liquid H₂, σ~200 μb/sr ==> ~ 10 events ²⁶S per week

Physical unique targets H, He

Basic scheme of the complex.

FS—filling system; RS—tritium recovery and radiation monitoring system; RC—reaction chamber; TT—tritium target; GSE—gas supply/evacuation line; BS1(2) hydrogen (deuterium) source; BS3—tritium source; BS4, BS5—traps; GC, GC1—helium gas-cylinders; D1, D2 pressure gauges; D3, D4—vacuum gauges; FP1, FP2 vacuum pumps (BOC EDWARDS GVSP 30); TMP1, TMP2—turbo pumps (STR-300M); MV—measuring vessel (270 cm3); G1, G2—getters; VE1–VE6 valves (open circles show all other valves); IC1, IC2 ionization chambers; VM1, VM2—vacuum gauges blocking the gas release in ventilation in excess of a given level of the gas-specific volumetric activity.

<image>

A.A. Yukhimchuk et al., NIM A513 (2003) 439. <u>Gas:</u> $\phi=25 \text{ mm}, d=3\div6 \text{ mm},$ T=26 K, P=0.92 Atm, $x=3*10^{20} \text{ Atm/cm}^2$ <u>Liquid:</u> $\phi=20 \text{ mm}, d=0.4\div0.8 \text{ mm},$ $w=2x8.4 \mu \text{ stainless steel},$ $x=1.1*10^{21} \text{ Atm/cm}^2$ $I \leq 960 \text{ Ci} (3.54*10^{13} \text{ Bq})$