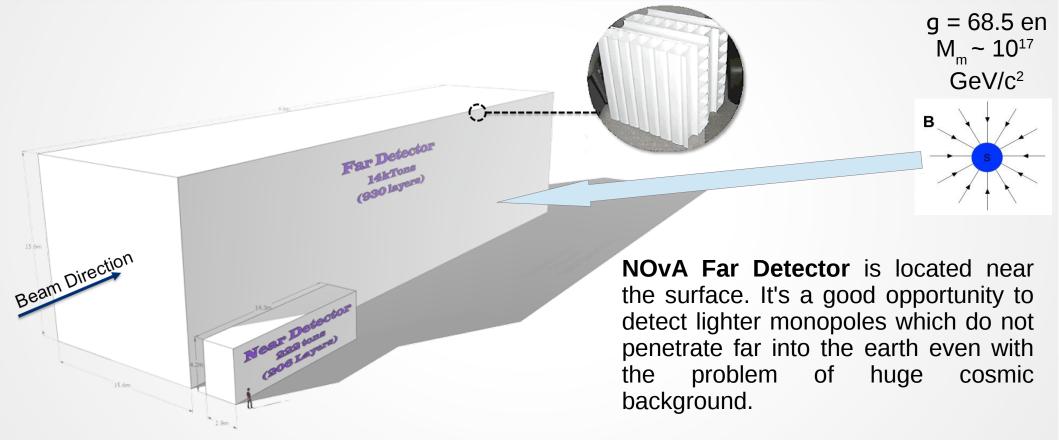

Slow magnetic monopoles search in NOvA

Alexander Antoshkin (DLNP JINR)

2-6 October 2017

NOvA experiment



NOvA is a long-baseline accelerator neutrino experiment.

It is a very powerful tool for measurements of different neutrino parameters.

2-6 October 2017

NOvA Detectors

Why are we interested in monopoles?

Quantum mechanical formulation of the **magnetic monopoles** was made by Paul Dirac in 1931. Searches for these particles are very important for several reasons:

- > Their existence would explain the quantization of electric charge.
- It is possible to restore symmetry between electricity and magnetism by means their introduction into the theory of electromagnetism.
- Magnetic monopoles naturally appears in Grand Unification Theories (GUT).

Monopoles properties

The Dirac's electric charge quantization relation says:

e * g = n * ħc/2 ,

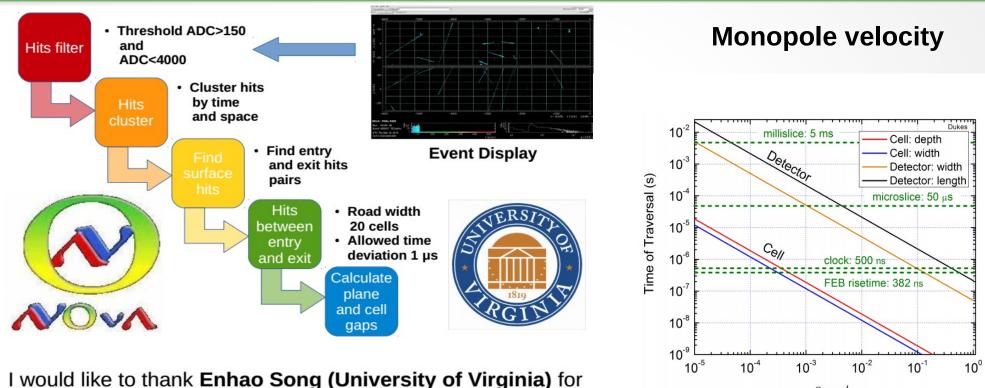
where **e** is a basic electric charge and **n** is an integer. It means that magnetic monopoles could have a magnetic charge (**g**) 68.5 times greater than the charge of the electron. As the result they are expected to be very highly ionizing. "Slow" monopoles with $\beta < 10^{-2}$ can be identified due to their linear tracks with long transit times through the detector. Monopoles with this β take 5 µs to cross the whole detector in comparison with cosmic muon which takes only **50 ns**.

Monopoles properties

$\beta = \nu/c = velocity/speed of light$

C Stre-tw-stre Blickly NAS. g = ± 137e/2 (Ahlen) β = 10⁻¹ 1000 x Muor Protons (Lindhard) 1.0 E 5 Ē o Measurements $\beta = 10^{-2}$ -100for protons in Si 100 x Muon ų 0 Protons (Bethe) 0.05 $\beta = 10^{-3}$ = ± 137e/2 via eq. (60) 10 x Muon 4000 NOVA - ENAL E929 0.005 0.01 0.05 0.1 0.5 1.0 st 10 ß 5 MeV g⁻¹cm⁻² Event: 1 / L L LLLL III I THE MULTINESS IN THE REAL OF THE TC Thu Jan 1, 1970 2530 2535 2540 0:00:0.00000000 -"Minimum Ionizing" Ritson 50 $\mu s \rightarrow \beta = 10^{-3}$ **Highly ionizing particle** 10-3 10-4

2-6 October 2017


Slow magnetic monopoles search in NOvA

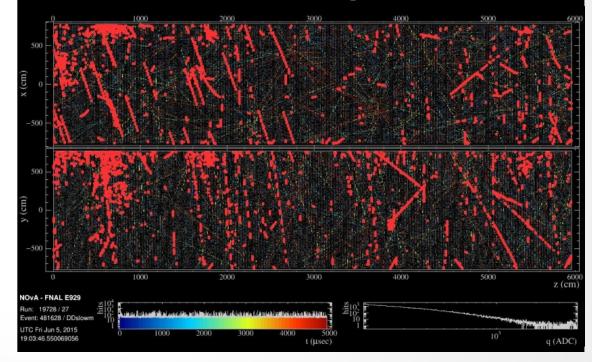
Monopole energy loss

Slow monopole trigger

The slow monopole trigger was implemented in June 2015. It allows to identify slow ($\beta < 10^{-2}$ monopole) tracks by checking the number of plane gaps between the entry and exit hits. We look at all of the hit planes in the contained area and look for gaps.

Slow monopole trigger

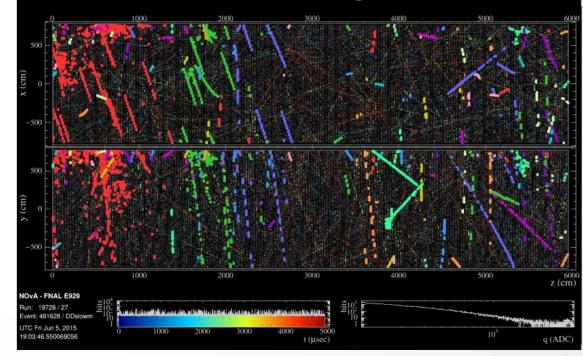
providing me with the information about this trigger.


2-6 October 2017

Slow magnetic monopoles search in NOvA

 $\beta = v/c$

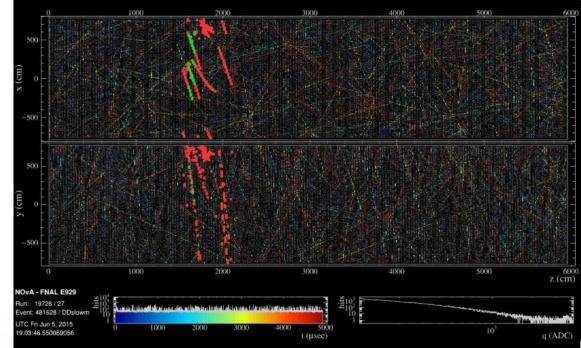
Offline reconstruction algorithm → Monopole cluster


- identify cosmic tracks with Cosmic Tracker (on all hits)
- remove hits with less than 100 ADC
- remove hits associated with cosmic tracks
- remove isolated hits

Event 481628 – Monopole Cluster

Offline reconstruction algorithm → Monopole slicer

- run slicer to remove uncorrelated hits
 - > using Window Slicer
 - with increased time window of 10 µs



Event 481628 – Monopole Slices

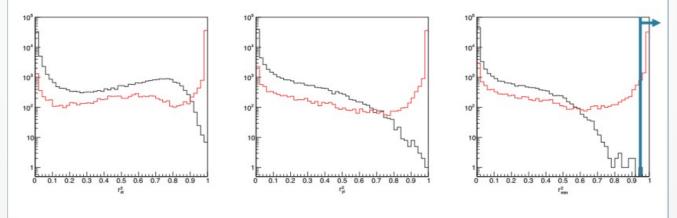
Offline reconstruction algorithm → Monopole track

- remove slices with ΣE > 2×10⁶
 ADC
- identify straight line objects
 - Using standard NOvA tool
- > merge 2D tracks into 3D tracks
 - only keep tracks with at least 100 hits
 - sort tracks from slowest to fastest (i.e. first track = slowest track)

Event 481628 - Monopole Tracks

Data Samples

- Monte Carlo (Simulated monopoles + 5 ms long non-bias data produced by the daily SNEWS trigger → true monopole and nominal detector activity). Four velocities β_{sim}: 5 x 10⁻⁴, 1 x 10⁻³, 5 x 10⁻³, 1 x 10⁻².
- Slow Monopoles Triggered Events (Slow Monopole Trigger → first run is 19728, last one is 20752 for Low Gain (100) and 20753 like the first one for the new Data Set with High Gain (150).)


Event Selection

- > True/Reco Number of xz hits ≥ 20
- > True/Reco Number of yz hits ≥ 20
- > True/Reco Δ Plane xz ≥ 10
- > True/Reco Δ Plane yz ≥ 10
- ≻ True/Reco Length \ge 10 m
- ➤ The slowest track → primary monopole track

Linear Regression coefficient

- Histograms of the linear regression coefficient (black: 10% data, MC: red) for:
 - r_{xt}^2 : calculated from xt-hits (left)
 - r_{yt}^2 : calculated from *yt*-hits (center)
 - r_{\min}^2 : minimum of the above two for each event (right)

• We require $r_{\min}^2 > 0.95$.

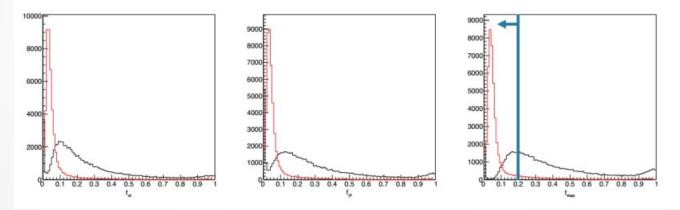
Time Gap Fraction

- A common reconstruction failure is when two cosmic rays get clustered together.
- In order to eliminate this, we look for gaps in the timing distribution of the hits.
- First, we sort all of the hits by time (each view separately) and then look for the largest gap (Δt_{max}). The time gap fraction (*f*) is then defined by:

$$f = \frac{\Delta t_{\max}}{\Delta t_{\text{track}}}$$

where Δt_{track} is the full track duration.

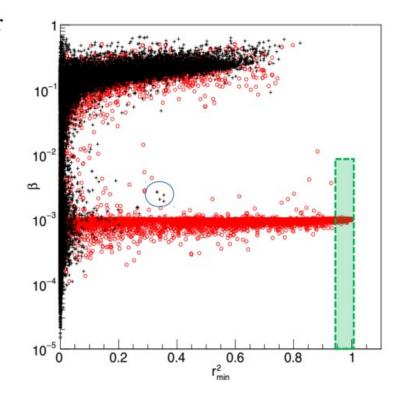
• f = 0: Good track with no gaps in timing.


• f = 1: Uncorrelated activity occurring early and late in time.

Time Gap Fraction

• Histograms of the time gap fraction (black: 10% data, MC: red) for:

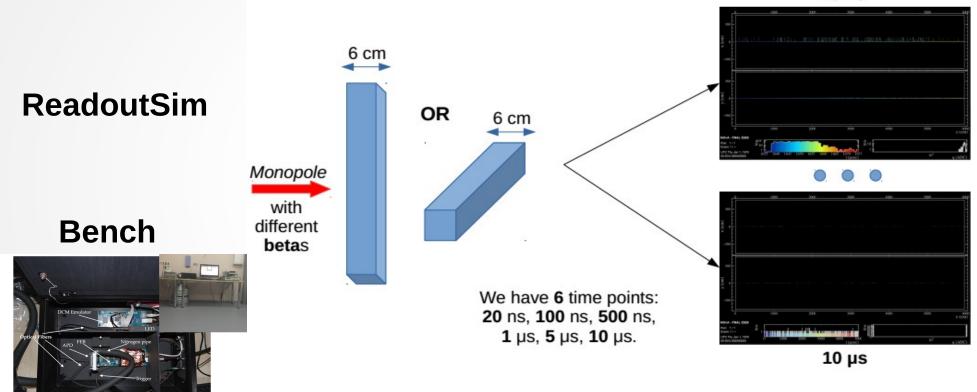
- f_{xt} : calculated from xt-hits (left)
- f_{yt} : calculated from yt-hits (center)
- f_{max} : maximum of the above two for each event (right)


• We require $f_{\text{max}} < 0.2$.

2-6 October 2017

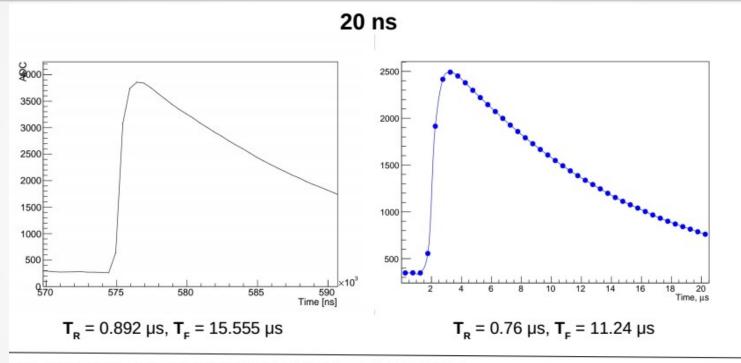
Velocity vs. Regression coefficient 10% Data

- Let us see how our cut performs as a function of reconstructed velocity.
- Data: black
- MC: red
- Signal: green



- NOvA far detector is pretty sensitive to lighter monopoles and has the unique potential to "touch" a new region of phase space due to it's location on the surface and our large surface area. These factors give us very high chance to "catch" the magnetic monopoles.
- Slow Monopole Trigger works pretty good.
- Special "cutter" and "selector" were developed. We tested only 10% of Low Gain data. Remaining data are waiting for us! Technote is almost ready.
- Right now we asked to allow us apply the "cutter" for remaining data. Collaboration gave us useful comments. We solved the majority of issues and shortcomings.
- > I started to observe **High Gain** data.
- We still don't see any good candidates in real data but our "cutter" and "selector" perfectly work on Monte Carlo events.

Thank you for your attention!


Backup (ReadoutSim vs Bench)

20 ns

2-6 October 2017

Comparison (one point – 20 ns)

* T_R is the time of Amplitude changing from 0 to (1-1/e)*Amp_{Max}
 * T_E is the time of Amplitude changing from Amp_{Max} to Amp_{Max}/e

→ 0 is equal to Pedestal

Summary

All units in **µs**

	20 ns	100 ns	500 ns	1 µs	5 µs	10 µs
Bench →	л	п	п	T _R = 1.303	л	T _R = 5.24
	T _F = 11.24	T _F = 11.17	T _F = 12.25	T _F = 10.74	T _F = 13.01	T _F ≈ 11
ReadoutSim →	T _R = 0.89	T _R = 0.46	T _R = 0.75	T _R = 1.17	T _R = 2.66	T _R = 4.75
	T _F = 15.56	T _F = 13.18	T _F = 9.72	T _F = 9.91	T _F = 13.4	T _F = 13.7

Main results are:

- Points 20 ns, 100 ns, 500 ns, 1 μs have normal linear behavior for both cases but with different slopes: Bench has T_F = 8.376 + 0.00146*Amp, ReadoutSim has T_F = 8.89 + 0.00186*Amp.
- Points **5 \mus and 10 \mus** have «strange» T_F dependence on the Amplitude.
- T_{R} depends on the outer pulse width and it's almost the same for Bench and ReadoutSim.