East-West cosmic muon flux asymmetry in the Far Detector of NOvA

Olga Petrova (DLNP JINR)

AYSS-2017

2-6 October 2017

NOvA experiment

NOvA is a long-baseline accelerator neutrino oscillation experiment.

Liquid-scintillator detectors have segmented structure.

Olga Petrova (DLNP JINR)

East-West cosmic muon flux asymmetry

NOvA Far Detector

Far Detector is located on the surface and it is huge (14 kt), so rate of cosmic rays is very high.

Olga Petrova (DLNP JINR)

East-West cosmic muon flux asymmetry

East-West Asymmetry

What result we expect

Figure: P.N. Diep *et al.* Measurement of the east-west asymmetry of the cosmic muon flux in Hanoi $[21^{\circ}01'42.5'' \text{ N}, \text{ geomagnetic cut-off } 17 \text{ GV}]$ (2003)

(NOvA FD is located at $48^{\circ}22'46''$ N, geomagnetic cut-off is about 1-2 GV.)

What result we expect

Figure: Left: D.W.P. Burbury, K.B. Fenton. The High Latitude East-West Asymmetry of Cosmic Rays (1951). Hobart $[42^{\circ}53'00'' \text{ S}, 3 \text{ GV}]$. Right: L.L. Nichols. The East-West cosmic ray effect at Corvallis $[44^{\circ}34'15'' \text{ N}, 2 \text{ GV}]$, Oregon (1961).

(NOvA FD is located at $48^{\circ}22'46''$ N, geomagnetic cut-off is about 1-2 GV.)

6 / 11

Olga Petrova (DLNP JINR) East-West cosmic muon flux asymmetry 2–6 October 2017

East-West asymmetry in NOvA (PRELIMINARY)

Figure: Cosmic muon flux and EW-asymmetry in the NOvA Far Detector without any correction to the matter of the surrounding hill

7 / 11

Correction to overburden-induced asymmetry

Figure: Roughly corrected EW-asymmetry: for each bin $\Phi_E^{\rm data}$ is multiplied by the factor $\Phi_W^{\rm MC}/\Phi_E^{\rm MC}$

Further plans

In order to take geometry-induced asymmetry more accurate, we can correct flux with an attenuation factor.

- To calculate EW-asymmetry we need to know 'real', not deformed cosmic muon fluxes from East and West. $\Phi(E, \theta, \phi)$ - real muon flux on the surface
 - $N(\theta, \phi, \vec{r})$ muon flux, detected in FD.
- We can calculate an 'attenuation' factor

$$d = \frac{N}{\Phi} = \frac{\int \epsilon(\xi') \int \Phi(E, \theta, \phi) P_{\xi \to \xi'}(\xi) d\xi d\xi'}{\int \epsilon(\xi) \Phi(E, \theta, \phi) d\xi},$$

where ξ accumulate E, θ, ϕ, \vec{r} (\vec{r} characterizes track position (stopping point, for example)), $P_{\xi \to \xi'}$ characterizes muon 'attenuation' in matter, $\epsilon(\xi)$ is a reconstruction efficiency.

• $P \sim \int \rho(l) dl$

Overburden effect and efficiency (detector angle notation)

Work on the East-West asymmetry of cosmic rays in NOvA is in progress. **Thank you!**